=PFL

Principles of Gomputer Systems: Layers

Katerina Argyraki

School of Computer & Communication Sciences

e Layer = group of modules

® [nternet transport layer = UDP + TCP
® [nternet network layer = IP

* A module communicates with modules 1n layer above/below,
on the same stack instance, through API

® send/receive calls/notifications

* A module communicates with modules 1n the same layer,
on a different stack instance, through a protocol

o Jieader semantics

Layering violation

e When a module violates these rules

o relies on information about other layers that is not passed through the proper APIs

® interprets a header that belongs to another layer

* When a module makes assumptions about the operation of another module
that belongs to a different layer

How to pick layers?

o [ook for “natural” boundaries

® common functionality

® developer expertise

® (Consider performance

® pick the finest layering that makes sense
and provides the required performance

e Data dehivery

e Rehliable data delivery
e (Congestion control

* Address depletion

® Scaling content distribution

e Data delivery

Data delivery

* Deliver a packet from a source end-system to a destination end-system

e Partly solved at the link layer of local networks

® takes a packet across one physical link

e Partly solved at the network layer of local networks
(= link layer of the Internet)

® takes a packet across a sequence of physical links (= one local network)

e Partly solved at the network layer of the Internet

® takes a packet across a sequence of local networks (= the Internet)

Network layer

e [Hierarchical addresses

e [P routing learns one route per [P prefix

e [P forwarding maintains state per IP prefix

e Hierarchy => scalability

e Two levels of aggregation

* intra-AS: addresses of local network aggregated into local prefix
o inter-AS: local prefixes of AS aggregated into externally visible prefix

Link layer

e [lat addresses

e L2 learning learns one route per active MAC address

o L2 forwarding maintains state per active MAC address

o Scales well enough for local networks

e Rehliable data delivery

Reliable data delivery

* Deliver a packet from a source end-system to a destination end-system
with the capability to recover from corruption and loss

e Partly solved at the transport layer
o TCP offers reliable data delivery end-to-end

e Partly solved at the link layer (of local networks)

o e.g, reliable data delivery across a wireless link

The end-to-end argument

e Saltzer, Reed, and Clark, 1981

e If an upper layer must provide X anyway,
don’t go out of your way to provide X at a lower layer

e [t may make sense to also provide X at a lower layer
as a performance optimization...

e ...but consider the impact on upper-layer modules that do not need X.

e Acknowledgment of reception
* Duplicate suppression

® In-order delivery

e (Congestion control

* Maximize throughput without creating network congestion

* Solved at the transport layer
® through the TCP congestion control algorithm

® interprets a timeout as an indication of packet loss

® interprets packet loss as an indication of network congestion

e Bad idea: early retransmissions can lead to congestion collapse

e [ayering violation: a module assumes that 1t knows when 1s the right time to
retransmit, even though the relevant information belongs to the layers below

e There may be packet loss without congestion

e ¢.g., awireless link experiences loss due to fading

e There may be congestion without packet loss

e c¢.g., alink with a very large queue experiences congestion

e [ayering violation: TCP assumes that packet loss equals network congestion

e ECN bits 1n both the IP and the TCP header
e A router sets an ECN bit 1n the IP header to signal congestion to the receiver

* The (network layer of the) recerver passes that information to TCP

® The TCP recerver sets an ECN bit in the TCP header
to signal congestion to the TCP sender

* Network congestion detected at the network layer
* Information passed to TCP through the API

* Address depletion

* We are running out of IPv4 addresses
e Solved by introducing a new technology at the network layer (IPv6)

* Solved through Network Address Translation (NAT)

223.1.1.4

223.1.09.1 223.1.1.16
IP dst=223.1.9.2

IP src=223.1.1.16

IP dst=223.1.1.16 XX B X~
IP src=223.1.9.2

@ private address space
10.0.0.11

IP dst=223.1.1.16

IP src=10.0.0.11

IP address

TCP port | TCP port
10.0.0.11 223.1.1.4

223.1.9.1 223.1.1.16
IP dst=223.1.9.2
IP dst=223.1.1.16 BEETER KX IP src=223.1.1.16

IP src=223.1.9.2 ~_ TCP dst port=954
TCP src port=954 001 NAT gateway

IP dst=223.1.1.16 [| Network Address
IP src=10.0.0.11 JUXXoRE! Translation (NAT)

TCP src port=756

Network Address Transiation

o NAT gateway keeps state per TCP connection

e Maps each local {IP address, TCP port number} tuple
to a different, externally visible TCP port number

e Embeds the local IP address 1n the TCP port number

e [ayering violation: the NAT gateway assumes
that 1t understands the semantics of the TCP header

® Scaling content distribution

e How can a content provider serve more clients
without increasing the transmission rate of its link to the Internet?

e Partly solved through transparent caches
e Partly solved through Content Distribution Networks + dynamic DNS

e Reduce user-content distance

e Distribute load across content servers

These are “dirty” solutions

e Transparent caches hijack TCP connections

e CDNs duplicate network-layer functionality
e Both still need extra round-trip for DNS

e [ayer duplication or violation + still limited by DNS

