=PFL

Modularity through Glient/Server Organization

Prof. George Candea
School of Computer & Communication Sciences

Client/server

;

$)00/q buipjing

R

* Understand effective techniques for modularizing systems

* Think (more) deeply about the trade-offs involved in modularization

o |norder to resolve these trade-offs in an informed manner

* |dentify further examples of modularization

o ynderstand how modularization differs from abstraction
* understand the role that naming plays in modularization

* Brief recap of modularization
* Client/server organization

* Remote procedure calls (RPC)

Modularity

o Specifies “what” a component/subsystem does

* Together with modularity,
it separates “what” from “how”

=> abstraction

HOW

o Specifies “what” a component/subsystem does

* Together with modularity,
it separates “what” from “how”

=> abstraction

HOW

o Specifies “what” a component/subsystem does

* Together with modularity,
it separates “what” from “how”

=> abstraction

* Scope
* Private: unique within a context (e.qg., a private IP address)
* (5lobal: unique across contexts (e.q., a global IP address)

o Structure

* Hierarchical: name relationship implies object relationship (e.g., two IP addresses
sharing the same prefix)

* Flat: name relationship implies nothing (e.q., content IDs in Peer-to-Peer networks)
* Naming system

o Directories of name->value mappings, support name lookups and updates

Layers

o Layer = group of modules

* Internet transport layer = UDP + TCP
* Internet network layer = IP

* Module communicates with modules in layer above/below,

on the same layer stack instance, through AP

* send/receive calls/notifications

* Module communicates with modules in the same layer stack,

on a different stack instance, through a protocol

e header semantics

TCP/UDP

7

TCP/UDP

IP/ICMP

7

IP/ICMP

ARP/MAC

ARP/MAC

) A
=
O .
o) < Stack pointer
' AN
O \\\
‘lcg ~
(D \\

Callee’s RN

K

= stac
) frame .
3 .
O S
- N
. .
Q
Q.
Q.
-
(0))
= Caller’s
® stack
Q
& frame

<

-_——
—_—
—_
—_—
—_—
—_—
—_—
—_——
—_—
—_
—_—
—_—
—_—
—_—
—_
—_—
—_—
—_—
—_—
—_—
—_—
—_—
-_—
—_—
—_—
—_——
—_—
—_—
—_—
—_—
-_—
—_—
—_—
—_——
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_
—_— -
—_—

-_—
—_—

Program code

Program data

Heap

Stack

0 A
=
o
O > SP
'
O
8
@» Space for local vars
Callee’s
= e
g Return address
i Call arguments
% Saved temp registers
0p)
=] Caller’s
o) stack
QO
0 frame
Ov

Stack grows

oseaJoul sippe Alowsn

>

<

SP

Caller’s
stack
frame

ABI = interface between binary modules
Modularization

* Depends on programmers doing the right thing
(= “soft modularization)

o Compilers and runtimes help

Caller and callee trust each other

o (allee could corrupt caller’s stack (e.qg., buffer overflow)
o (allee might return to wrong addr (e.g., stack smashing)

o (Callee might fail (e.g., SIGFPE due to div by zero)
= “fate sharing"

o (allee might leave return addr in wrong register

Stronger intra-program modularity

o Untyped languages
o Weakly typed languages

o Strongly typed languages

* Ensuring type safety

Have types, but can change (e.q., explicitly cast data from one type to another)

Each chunk of memory has well defined type

Static vs. dynamic

Modularity violations

Callee could corrupt caller’s stack (e.g., buffer overflow)
Callee might return to wrong addr (e.q., stack smashing)
Callee might fail (e.g., SIGFPE due to div by zero) => “fate sharing”
Callee might leave return addr in wrong register

* Programmers are humans

* Trusting them is “soft” modularization
o “Enforced” modularization: modules stay intact regardless of human mistakes

o Better to trust compilers, runtimes, libraries, operating systems, ...
o Widely used and robust (even though they too are buggy...)

o Better to trust hardware
o Widely used and robust (even though it too is buggy...)

GClient/Server Organization

* Place modules in separate, strongly isolated domains, and have them
communicate via messages

* Messages typically need to be marshalled/unmarshalled for send/
receive

* Examples

* Web servers with clients connecting from remote machines
* Front-end servers < back-end servers
* Microservices

* Fate sharing

Physical (and virtuall servers

* Rely on physics
* Reduce fate sharing

* |mprove encapsulation

Client

Client

=

Client

Physical (and virtuall servers

* Rely on physics
* Reduce fate sharing

* |mprove encapsulation

Y/

0/’,

é//%
J

Physical Servers

SN

%

Physical Se

Virtualization

—

Virtual Servers

/\

/’I

e

é//%
Y

o/”

/4

Physical (and virtuall servers

O Rely on phyS|CS Physical Router
* Reduce fate sharing |

* |mprove encapsulation Data Center Gateway

Runs as multiple vRouters
in existing top of rack

switch for N-S traffic
Tenant A / \ Tenant B

Logical Router / \ Logical Router
(distributed VRF

‘i‘ (distributed VRF
running in overlay) /[\ i
g Y [=) running in overlay)
~_ T /.Jo0111/24
[0[ﬁ
VM ‘ VM | VM

10.1.1.14/24

Physical (and virtuall servers

* Rely on physics

* Reduce fate sharing

* |mprove encapsulation C)

Air-gapped Network

Devices included in the air-gapped
network are physically isolated and
can communicate with each other,
but cannot communicate with any
other network outside of the air-gap.

Physical (and virtuall servers

* Rely on physics

* Reduce fate sharing

* |mprove encapsulation C)

Air-gapped Network

Devices included in the air-gapped
network are physically isolated and
can communicate with each other,
but cannot communicate with any
other network outside of the air-gap.

* An exercise In modularization of otherwise monolithic kernels
o [Liedtke's minimality principle
o Servers = trusted intermediaries

o Essentially daemon programs with some extra privileges
* e.g., can access physical memory that would otherwise be off-limits

* Talks to servers over IPC (inter-process communication)

* Instead of syscalls in monolithic kernels

* How Is fate sharing”? How is encapsulation?

e An exercise In abstraction

o Exterminate all OS abstractions

* Enable user space to safely implement new OS abstractions

* How is fate sharing? How is encapsulation?

Memory Safety

* Memory can be defined (allocated) or undefined (not allocated)

o Assume deallocated memory is never reused b
* Pointer is a capability (p,b,e) 0—>
* PBase b, extent e, pointer p e

* *pis safe iff it accesses memory within the target obj that p is based on
* An execution is memory-safe <=> all ptr derefs in that exec are safe

* A program is memory-safe <=> all possible executions (for all possible
inputs) are memory-safe

Based on Nagarakatte et al., SoftBound: Highly Compatible and Complete Spatial Memory Safety for C, PLDI 2009

http://www.cis.upenn.edu/acg/papers/pldi09_softbound.pdf

* pisbased on memory object X iff p is

1. obtained by allocating X at runtime on the heap, or pP— D
2. obtained as & X where X is statically allocated, or X
* e.g, local or global variable, control flow target e

3. obtained as &X.foo (i.e., sub-object of X), or

4. the result of a computation involving operands that are ptrs based on X or non-ptrs

o copy of another pointer
* pointer arithmetic
e array indexing

An execution is memory-safe <=> object X is only accessed through pointers that are based on X

Memory Safety (recap)

* Pointer is a capability (p,b,e)

* PBase b, extent e, pointer p

* *p s safe iff accesses memory within the target obj that p is based on*
b<=p<=e

* An execution IS memory-safe <=>
all pointer dereferences in that execution are safe

* Aprogram IS memory-safe <=>
all possible executions (for all possible inputs) are memory-safe

*and that memory is defined

Benefits of Glient/Server

* Narrow channels for error propagation

* [solation between “caller” and “callee”
* Memory safety introduces discipline in the access to memory objects

* Decoupling

o (Can fail independently —> the opposite of “fate sharing”
* Rely on timeouts to infer remote failure

* Forcing function to documenting interfaces

Drawhacks of Glient/Server

* Marshalling/unmarshalling messages incurs overheads
o Unnatural interaction between modules

* Semantic coupling may render functional decoupling moot

o E.g., caller cannot make progress without an answer

apparent flow

call

Client L1 ___ | runm| | Server

call return return call
Interface

Client Stub Server Stub

call . return return | | call
RPC Runtime ._ RPC Runtime
Library Library

network
messages

Client process Server process

Client address space Server address space

Client Server

Local procedure call Return Call Call Execse Return Local procedure invocation

Client stub Server stub

Parameters -> message Unpack Pack Unpack Pack Message -> parameters

RPC Runtimé RPC Runtimg
Call Packet
_ _J
_)

Result Packet

Examples of RPC systems

* NFS

o Java RMI

* Package rpc in Go

* (Google Web Toolkit

o SOAP (successor to XML-RPC)

* Apache Thrift

o gRPC (uses Google Protocol Buffers IDL)

Interface Definition Language (Gooyle protohuf)

message Person {

required string name = 1;
required int32 id = 2;
optional string email = 3;

. enum PhoneType {

| contacts.pb.h
' MOBILE = 0; — protoc --cpp_out=$DST_DIR contacts.proto — P

: HOME = 1: contacts.pb.cc
i WORK = 2; // name contacts.pb.h
| } inline bool has_name() const;

! inline void clear_name();

' message PhoneNumber { inline const ::std::string& name() const;

| required string number = 1; inline void set_name(const ::std::string& value);

. optional PhoneType type = 2 [default = HOME]; 1n1}ne void set_name(const charx value);

) inline ::std::string*x mutable_name();

E // 1id

) repeated PhoneNumber phones = 4; inline bool has_id() const;

inline void clear_id();
inline int32 t id() const;

message AddressBook { inline void set_id(int32_t value);
repeated Person people = 1;
' contacts.proto {/ ?mail
I T——— inline bool has _email() const;

inline void clear_email();

inline const ::std::string& email() const;

inline void set_email(const ::std::string& value);
inline void set_email(const charx value);

inline ::std::string*x mutable_email();

// phones

inline int phones_size() const;

inline void clear_phones();

inline const ::google::protobuf::RepeatedPtrField< ::pocs::Person_PhoneNumber >& phones() const;
inline ::google::protobuf::RepeatedPtrField< ::pocs::Person_PhoneNumber >x mutable_phones();
inline const ::tutorial::Person_PhoneNumber& phones(int index) const;

inline ::tutorial::Person_PhoneNumberx mutable_phones(int index);

inline ::tutorial::Person_PhoneNumberx add_phones();

http://contacts.pb.cc

Interface Definition Language (Gooyle protohuf)

message Person {

}

required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE 0;
HOME
WORK

}

1;
2;

message PhoneNumber {
required string number = 1;

}

optional PhoneType type = 2 [default = HOME];

repeated PhoneNumber phones =

message AddressBook {

}

repeated Person people = 1;

contacts.proto

contacts.pb.h

— protoc --cpp_out=$DST_DIR contacts.proto contacts.pb.cc

// serializes the message and stores the bytes in the given string.
// The bytes are binary, not text; we only use the string class as
// a convenient container.,

bool SerializeToString(stringx output) const;

// parses a message from the given string.
bool ParseFromString(const string& data);

// writes the message to the given C++ ostream.
bool SerializeToOstream(ostreamx output) const;

// parses a message from the given C++ istream.
bool ParseFromIstream(istreamx input);

http://contacts.pb.cc

// Interface exported by the server.
service Contacts {
// A simple RPC.
//
// Obtains the feature of a given Person.
rpc GetNumber(Person) returns (PhoneNumber) {}

//
// Obtains the PhoneNumbers available for the given Person.

E // A server—-to-client streaming RPC.
. rpc ListNumbers(Person) returns (stream PhoneNumber) {}

} e

message Person ...

|

protoc --grpc_out=. --plugin=protoc-gen-grpc=$PLUGIN_DIR contacts.proto

contacts.proto

contacts.grpc.pb.h
contacts.grpc.pb.cc

- remote interface type (“stub”) for clients
- abstract interface for servers to implement

Summary

Client address space

Client

Return Call

Client stub

Unpack Pack

RPC Runtime

Receive (Wait Send

Call Packet

Server address space

Server

Call E : Return

Server stub

Unpack Pack

RPC Runtimg

Result Packet

Define the service in an IDL file (.proto)

Generate message implementations using
the IDL compiler

Generate server and client code using the
RPC compiler

Write the server to implement the generated
interface

Write the client to use the interface

o Strong modularity with the convenience of a procedure call

* Reduce fate sharing by exposing callee failures in a controlled manner

* This means the caller can now recover easily (esp. if asynchronous RPC)
o .7

* RPCs typically take longer than a local procedure call

* [eaky abstraction

o |ssues of trust

* How do | know who is making the request?

* How do | know the message was not tampered with?
o .7

o What does “no response” imply?

o At-least-once semantics
e At-most-once semantics

* EXxactly-once semantics

* Push notifications (instead of pull)

o Publish/subscribe

* Brief recap
* Client/Server Organization: Overview
* Remote Procedure Calls (RPC)

