## LECTURE 5

## YASH LODHA

## 1. Local coordinates

Let $M$ be an $n$-dimensional manifold and let $p \in M$. Let $(U, \phi)$ be a chart containing $p$ and let $\phi(p)=q$. Recall the isomorphisms

$$
d \phi_{p}: T_{p}(U) \rightarrow T_{q}\left(\mathbf{R}^{n}\right) \quad d \phi_{q}^{-1}: T_{q}\left(\mathbf{R}^{n}\right) \rightarrow T_{p}(U)
$$

Since $\phi$ is a diffeomorphism, the tangent vectors

$$
\left.d \phi_{q}^{-1} \frac{\partial}{\partial x^{i}}\right|_{q}=\left.\frac{\partial}{\partial \phi^{i}}\right|_{p}
$$

for a basis for $T_{p}(M)$ and are called the coordinate vectors at $p$ associated to the chart $(U, \phi)$.
The action of $\left.\frac{\partial}{\partial \phi^{i}}\right|_{p}$ on $f \in C^{\infty}(M)$ is defined as

$$
\left.\frac{\partial}{\partial \phi^{i}}\right|_{p}(f)=\left.\frac{\partial}{\partial x^{i}}\right|_{q}\left(f \circ \phi^{-1}\right)
$$

In particular, note that

$$
\left.\frac{\partial}{\partial \phi^{i}}\right|_{p} \phi^{j}=1 \text { if } j=i \text { and } 0 \text { otherwise }
$$

To make the notation simpler, sometimes we may also refer to $d \phi_{p}$ above as simply $\left(\phi_{p}\right)_{*}$. We shall do this for the rest of the lecture. It is important to get used to both forms of notation since the literature is quite mixed.

Let $M, N$ be smooth manifolds. Let $F: M \rightarrow N$ be a smooth map, $p \in M$ and $F(p)=q \in N$. Let ( $U, \phi$ ) be a chart containing $p$ and $(V, \psi)$ be a chart containing $q$. We have the corresponding bases

$$
\left(\left.\frac{\partial}{\partial \phi^{i}}\right|_{p}\right) \quad\left(\left.\frac{\partial}{\partial \psi^{i}}\right|_{q}\right)
$$

of $T_{p}(M), T_{q}(N)$ respectively. Then

$$
\left.F_{*} \frac{\partial}{\partial \phi^{i}}\right|_{p}=\left.\sum_{1 \leq j \leq n}\left(\left.\frac{\partial}{\partial \phi^{i}}\right|_{p}\left(\psi^{j} \circ F\right)\right) \frac{\partial}{\partial \psi^{j}}\right|_{q}
$$

These coefficients are the coefficients of the Jacobian matrix of the coordinate representation

$$
\hat{F}=\psi \circ F \circ \phi^{-1}
$$

given as

$$
\left.\frac{\partial}{\partial \phi^{i}}\right|_{p}\left(\psi^{j} \circ F\right)=\left.\frac{\partial}{\partial x^{i}}\right|_{p}\left(\psi^{j} \circ F \circ \phi^{-1}\right)=\frac{\partial \psi^{j} \circ F \circ \phi^{-1}}{\partial x^{i}}(\phi(p))=(D \hat{F}(\phi(p))
$$

For the special case when $M=N$ and $F=i d$ (the identity map), we obtain

$$
\left.\frac{\partial}{\partial \phi^{i}}\right|_{p}=\left.\sum_{1 \leq i \leq n}\left(\frac{\partial}{\partial \phi^{i}}\left(\psi^{j}\right)\right) \frac{\partial}{\partial \psi^{j}}\right|_{p}
$$

Example 1.1. (Polar coordinates) Let $W=\mathbf{R}_{>0} \times(0,2 \pi)$. The map

$$
\phi: W \rightarrow \mathbf{R}^{2} \quad(r, \theta) \rightarrow(r \cos (\theta), r \sin (\theta))
$$

is a diffeomorphism onto its image. The inverse, $\left(U, \phi^{-1}\right)$ is a smooth chart for $\mathbf{R}^{2}$, called polar coordinates. The coordinate functions of $\phi^{-1}$ are written as $(r, \theta)$ and the standard coordinates are simply $(x, y)$.

Let

$$
p=\left(x_{0}, y_{0}\right) \quad q=\phi^{-1}(p)=\left(r_{0}, \phi_{0}\right)
$$

Then

$$
\left.\frac{\partial}{\partial r}\right|_{p}=\left.\left(\frac{\partial x}{\partial r}(q)\right) \frac{\partial}{\partial x}\right|_{p}+\left.\left(\frac{\partial y}{\partial r}(q)\right) \frac{\partial}{\partial y}\right|_{p}
$$

$$
\left.\frac{\partial}{\partial \theta}\right|_{p}=\left.\left(\frac{\partial x}{\partial \theta}(q)\right) \frac{\partial}{\partial x}\right|_{p}+\left.\left(\frac{\partial y}{\partial \theta}(q)\right) \frac{\partial}{\partial y}\right|_{p}
$$

Exercise 1.2. Finish the above computation.

## 2. Definition of tangent space by means of smooth curves

Let $M$ be a smooth manifold. A smooth curve is a smooth map $\gamma: J \rightarrow M$ where $J$ is an open subset of $\mathbf{R}$. The tangent vector to $\gamma$ at $r \in J, s=\gamma(r)$ is the "push-forward" vector

$$
\gamma^{\prime}(r)=\left.\gamma_{*} \frac{d}{d t}\right|_{r} \in T_{s}(M)
$$

where $\frac{d}{d t}$ is the standard basis vector of the vector space $T_{r}(\mathbf{R})$.
Given a smooth function $f: M \rightarrow \mathbf{R}$, we have

$$
\gamma^{\prime}(t)(f)=\left.\frac{d}{d t}\right|_{r}(f \circ \gamma)
$$

In terms of coordinate vectors in terms of a given chart $(U, \phi)$, we can express $\gamma^{\prime}(t)$ as

$$
\gamma^{\prime}(t)=\left.\sum_{1 \leq i \leq n}\left(\gamma^{i}\right)^{\prime}(t) \frac{\partial}{\partial \phi^{i}}\right|_{s} \quad \gamma^{i}=\phi^{i} \circ \gamma
$$

and $\left(\gamma^{i}\right)^{\prime}(t)$ is simply the ordinary differentiation.
Exercise 2.1. Show that every tangent vector in $T_{p}(M)$ is the tangent vector to a smooth curve.
Example 2.2. Consider the smooth curve

$$
\gamma: \mathbf{R} \rightarrow \mathbf{R}^{2} \quad \gamma(t)=(\cos (t), \sin (t))
$$

Then

$$
\gamma^{\prime}\left(t_{0}\right)=-\left.\sin \left(t_{0}\right) \frac{\partial}{\partial x}\right|_{s_{0}}+\left.\cos \left(t_{0}\right) \frac{\partial}{\partial y}\right|_{s_{0}} \quad s_{0}=\left(\cos \left(r_{0}\right), \sin \left(r_{0}\right)\right)
$$

Proposition 2.3. Let $F: M \rightarrow N$ be a smooth map between smooth manifolds. Let $\gamma: J \rightarrow M$ be a smooth curve where $J \subset \mathbf{R}$ is an open interval. Then

$$
F_{*}\left(\gamma^{\prime}(t)\right)=(F \circ \gamma)^{\prime}(t)
$$

Proof. This follows from the definitions.

## 3. Vector Bundles

Let $M$ be a smooth manifold. A smooth vector bundle of rank $k$ over $M$ is a smooth manifold $E$ together with a surjective map

$$
\pi: E \rightarrow M
$$

such that:
(1) For each $p \in M$, the set $\pi^{-1}(p)=E_{p}$ is a $k$-dimensional vector space, called the fibre of $E$ over $p$.
(2) For each $p \in M$, there exists a neighbourhood $U$ of $p$ and a diffeomorphism

$$
\phi: \pi^{-1}(U) \rightarrow U \times \mathbf{R}^{k}
$$

called a local trivialisation of $E$ over $U$ such that

$$
\phi\left(E_{p}\right)=\{p\} \times \mathbf{R}^{k}
$$

and

$$
\left.\phi\right|_{E_{p}}: E_{p} \rightarrow\{p\} \times \mathbf{R}^{k}
$$

is a vector space isomorphism.
We call $E$ the total space of the bundle and $M$ its base.
Given vector bundles $\left(E, \pi_{1}\right),\left(E^{\prime}, \pi_{2}\right)$ over the same manifold $M$, a bundle map $F: E \rightarrow E^{\prime}$ is a smooth map satisfying that:
(1) $\pi_{2} \circ F=\pi_{1}$.
(2) The map $\left.F\right|_{E_{p}}: E_{p} \rightarrow E_{p}^{\prime}$ is linear.

A bundle isomorphism is a bundle map whose inverse is also a bundle map.
A basic example of a bundle over $M$ is the trivial bundle, which is simply $M \times \mathbf{R}^{k}$.

## 4. The tangent bundle as a smooth vector bundle

Our goal now will be to show that the tangent bundle is a smooth vector bundle.
Lemma 4.1. Let $M$ be a smooth manifold of dimension n. The tangent bundle TM has a natural topology and smooth structure, making it a smooth $2 n$-dimensional bundle with the natural projection map $\pi: T M \rightarrow M$.

Proof. We shall define the smooth charts for $T M$. Let $(U, \phi)$ be a smooth chart for $M$. Then we define the map

$$
\Phi: \pi^{-1}(U) \rightarrow \mathbf{R}^{2 n} \quad \Phi\left(\left.v^{i} \frac{\partial}{\partial \phi^{i}}\right|_{p}\right) \rightarrow(\phi(p), v) \quad v=\left(v^{i} E_{i}\right)
$$

We define the following basis of the topology: the open sets in this basis are the inverse images of open balls in $\mathbf{R}^{2 n}$ under the maps $\Phi$ as above. So by construction, each such map $\Phi$ is a homeomorphism onto its image.

