The Transport Layer: TCP and UDP

Jean-Yves Le Boudec
2020

Contents

1. The transport layer, UDP

2. TCP Basics: Sliding Window and Flow Control
3. TCP Connections and Sockets

4. More TCP Bells and Whistles

5. Secure Transport

6. Where should packet losses be repaired ?

+
Mrr"”, "‘(‘[- A
nef ols =5 N
lice)

Chapter 4: The Transport Layer %

1. The Transport Layer

Reminder:
network + link + phy carry packets end-to-end
transport layer makes network services available to programs
is in end-systems only, not in routers
In TCP/IP there are mainly two transport layers
UDP (User Datagram Protocol):
TCP (Transmission Control Protocol): error recovery + flow control

There is no TCPv6 nor UDPv6, the same TCP and UDP are used over IPv4 and
IPv6

UDP Uses Port Numbers

Host

IPaddr=A |— IP network —

ncess “ess

126;\ / L
o IP SA=A DA=B prot=UDP
UDP TCP source port=1267
N destination port=53
...data...
IP
UDP Source Port UDP Dest Port
IP datagram UDP Message Length UDP Checksum

data

I UDP datagram

The picture shows two processes (= application programs) pa, and pb, are communicating. Each
of them is associated locally with a port, as shown in the figure.

The example shows a packet sent by the name resolver process at host A, to the name server
process at host B. The UDP header contains the source and destination ports. The destination
port number is used to contact the name server process at B; the source port is not used directly;
it will be used in the response from B to A.

The UDP header also contains a checksum the protect the UDP data plus the IP addresses and
packet length. Checksum computation is not performed by all systems. Ports are 16 bits unsigned
integers. They are defined statically or dynamically. Typically, a server uses a port number
defined statically.

Standard services use well-known ports; for example, all DNS servers use port 53 (look at
/etc/services). Ports that are allocated dynamically are called ephemeral. They are usually above
1024. If you write your own client server application on a multiprogramming machine, you need
to define your own server port number and code it into your application.

What is the definition of a «server» ?

m o O ™ >

A machine that hosts resources used in the web

A computer with high CPU performance

A computer with large data storage

The role of a program that waits for requests to come

The role of a program that allows users to access large
amounts of resources

None of the above

Solution

Answer D
Formally, a server is a role at the transport layer, where the program waits for
requests to come. In contrast, a client initiates communication to a server.

The UDP service is message oriented

UDP service interface
one message, up to 65,535 bytes
destination address, destination port, source address, source port
destination address can be unicast or multicast

UDP service is message oriented
UDP delivers exactly the message (called “Datagram”) or nothing
consecutive messages may arrive in disorder
message may be lost -- application must handle

If a UDP message is larger than the possible maximum size for the IP layer,
MTU, then fragmentation occurs at the IP layer — this is not visible to the
application program

UDP is used via a Socket Library

The socket library provides a programming
interface to TCP and UDP

The figure shows toy client and server UDP
programs. The client sends one string of chars to
the server, which simply receives (and displays)

It.

socket(socket.AF_INET,...) creates an IPv4 socket and
returns a number (=file descriptor) if successful;
socket(socket.AF_INETS,...) creates an IPv6 socket

bind() associates the local IP address and port
number with the socket — can be skipped for a client
socket. Port 0 means any available port

IP address can be 0 (0.0.0.0 or ::), it means all
addresses of this host

sendto() gives the destination IP address, port
number and the message to send

recvfrom() blocks until one message is received for
this port number. It returns the source IP address and
port number and the message.

client server

s=socket.socket() s=socket.socket();

\ 4

s.bind()

» &

» <

A\ 4 v

s.sendto() \s.:ecvfrom()

I

s.close()

% ./udpClient <destAddr> bonjour les amis
%

% ./udpServ &
%

Is there a UDPv6 ?

There is no UDPv6 (nor TCPv6), UDP and
TCP protocols are not affected by the choice
of IPv4 or IPv6

However, there are UDPv4 sockets and
UDPv6 sockets.

An application program has to choose IPv4
or IPv6, or, better, to support both.

This can be done using DNS (with eg.
socket.getaddrinfo()) to know what is

available.

C:\Users\joe> python
>>> import socket
>>> socket.getaddrinfo("Tca.epfl.ch", None)

[(<AddressFamily.AF_INET6: 23>, 0, 0, "',
('2001:620:618:521:1:80b3:2127:1', 0, 0, 0)),
(<AddressFamily.AF_INET: 2>, 0, O, "', ('128.179.33.39",
0))]

socket(AF INET,...)
or

socket(AF_INETS®,...)

client

s=socket.socket()

socket.getaddrinfo()
select one destination
address

Y

s.bind()

l

s=socket.socket()

s.close()

\d

s.sendto() N

Y

s.close()

10

An IPv6 socket can be dual-stack

On some dual-stack machine (= IPv4 and IPv6) an IPv6 socket can be bound to
both IPv6 and IPv4 addresses of the local host.

It then receives packets from IPv6 and from IPv4 correspondents.
IPv4 addresses of correspondents are mapped to IPv6 addresses using the [Pv4-
mapped IPv6 address format, i.e. an address in the block ::ffff:0:0/96

From 2001:face:b00c::1 From ::ffff:0102:0304
IPv6 socket

2020:baba::b0b0 11.22.33.44
From 2001:face:b00c::1 From 1.2.3.4

Available on Linux, banned on Windows.
An |Pv4 socket cannot be dual-stack. Why ?

11

Solution

It is possible to map IPv4 addresses to a subset of the IPv6 space because IPv6
addresses are much longer in bits. The converse is not possible: there are

more IPv6 addresses than IPv4 addresses.

An IPv4 socket cannot receive data from an IPv6 source address.

12

How the Operating System views UDP

[Application program]

id=5 / id:!j UDPSDUs \ id=4

V
I [Pv6 I [Pv4 [Pv4 I‘

‘ socket socket socket

buffer m buffer upp
port=32456 port=32456 /\ port=32654

address= IP

2001:baba::b0b addfe 1:22:33:44

[

[Pv6 packet IPv4 packets

Socket 5 is bound to local
address 2001:baba::b0b0
and port 32456; receives all
data to 2001:baba::b0b0
udp port 32456

Socket 3 is bound to local
address 11.22.33.44 and
port 32456; receives all data
to 11.22.33.44 udp port
32456

Socket 4 is bound to local
address 11.22.33.44 and
port 32654; receives all data
to 11.22.33.44 udp port
32654

13

With a dual-stack IPv6 socket

[Application program

id=5 / UDPSDUs \ id=4

’\IP%’If [Pv4 I

socket | socket |

|:| |:| buffer
port=32456Morm

(]\ port=32654

ubDpP

address=
2001:baba::b0b

addfe 1.22.33.44

IP

T

[Pv6 packet IPv4 packets

Socket 5 is non connected
and is bound to any local
address, which includes
IPv6 and IPv4 addresses,
and to port 32456.
Receives all packets to
2001:baba::b0b0, udp port
32456 and to 11.22.33.44
udp port 32456

Socket 4 is non connected
and is bound to local
address 11.22.33.44 and
port 32654. Receives all
packets to 11.22.33.44 udp
port 32654

14

How the Operating System views UDP

On the sending side: Operating System sends the UDP datagram as soon as
possible

On the receiving side: Operating System re-assembles IP fragments of UDP
datagram (if required) and keeps it in buffer ready to be read. Packet is
removed from buffer when application reads.

A socket is bound to one port; it is also bound to one or multiple IP addresses of
the local machine.

15

Lisa’s browser sends DNS query to DNS server, over UDP.
What happens if query or answer is lost ?

2 DNS query www.zurich.ibm.com

name server

DNS answer www.zurich.ibm.com
A 193.5.61.131

UDP UDP

A. Name resolver in browser waits for timeout, if no
answer received before timeout, sends again

B. Messages cannot be lost because UDP assures
message integrity
C. UDP detects the loss and retransmits

D. Je ne sais pas

16

Solution

Answer A

17

2. TCP Basics: Sliding Window and Flow Control

In the Internet, packets may be lost
buffer overflow
physical layer errors
UDP application must handle loss
TCP solves the problem once for all

18

TCP offers in-sequence, lossless delivery

What does TCP do ?

TCP guarantees that all data is delivered in sequence and without loss, unless
the connection is broken;

How does TCP work ?
data is numbered (per-byte sequence numbers)

a connection (=synchronization of sequence numbers) is opened between
sender and receiver

TCP waits for acknowledgements; if missing data is detected, TCP re-
transmits

19

TCP Basic Operation 1: showing SEQ and ACK

Al 1 seq 8001:8501 B
) " deliver
2 ack 8501 bytes
. | seq8501:9001 8001:8501
, |_seq9001:9501 -X
- |_seq 9501:10001 o
6 »
Timeout! [7)é ack 8501
AN seq 8501:9001 deliver
> > bytes
8501:9001
ack 9001
deliver
9
seq 9001:9501 bytes
10 X 9001:10001

The previous slide shows A in the role of sender and B of receiver. The application at A sends data in blocks
of 500 bytes. The maximum segment size is 1000 bytes. Ranges such as 8001:8501 mean bytes numbers
8001 to 8500.

Packets 3, 4 and 7 are lost.

B returns an acknowledgement in the ACK field. The ACK field is cumulative, so ACK 8501 means: B is
acknowledging all bytes up to (excluding) number 8501.

At line 8, the timer that was set at line 3 expires (A has not received any acknowledgement for the bytes in
the packet sent at line 3). A re-sends data that is detected as lost, i.e. bytes 8501:9001. When receiving
packet 8, B can deliver to the application all bytes 8501:9001.

When receiving packet 10, B can deliver bytes 9001:10001 because packet 5 was received and kept by B in
the receive buffer.

21

TCP Basic Operation 1: showing SEQ, ACK and SACK

Al 1

9
10

TcpMaxDupACKs setto 1 at A

seq 8001:8501

B

ack 8501
seq 8501:9001

X

seq 9001:9501

- X

seq 9501:10001

ack 8501 sack (9501:10001)
seq 8501:9501

v

deliver
bytes
8001:8501

deliver

ack 10001

seq 10001:10501

> bytes
8501:10001

deliver
bytes

10001:10501

22

In addition to the ACK field, most TCP implementation also use the SACK field (Selective
Acknowledgement). The previous slide shows the operation of TCP with SACK.

The application at A sends data in blocks of 500 bytes. The maximum segment size is 1000 bytes. Packets 3
and 4 are lost.

At line 6, B is acknowledges all bytes up to (excluding) number 8501.

At line 7, B acknowledges all bytes up to 8501 and in the range 9501:10001. Since the set of acknowledged
bytes is not contiguous, the SACK option is used. It contains up to 3 blocks that are acknowledged in
addition to the range described by the ACK field.

At line 8, A detects that the bytes 8501:9501 were lost and re-sends them. Since the maximum segment
size is 1000 bytes, only one packet is sent.

When receiving packet 8, B can deliver bytes 9001:10001 because packet 5 was received and kept in the
receive buffer.

23

TCP receiver uses a receive buffer = re-sequencing buffer to store
incoming packets before delivering them to application

Why invented ?

Application may not be ready to consume data

Packets may need re-sequencing; out-of-sequence data is stored but is not

visible to application

1 seq 8001:8501
seq 8501:9001
seq 9001:9501

seq 9501:10001

N ot BN [SY] [N}

seq 8501:9501

ack 8501

ack 8501 sack (9501:10001)

ack 10001

seq 10001:10501

e
A —

>4
X

|

Can be read

. "'3“ 8001:8501

(received)

/

\

by app

8001:8501 é‘

9501:10001 Invisible to app

(cannot be read)

8001:10001 h

——————

24

TCP uses a sliding window

The receive buffer may overflow if one piece of
data “hangs”

E.g. multiple losses affecting the same
packet

This is why the sliding window was invented
limits the number of data “on the fly”

Pn+1

Receive

PO Buffer
\>

P1 >< i

P2

P1 P2

Pn
PO again
g\>< P1P2...Pn|

P1P2...Pn+1

25

How the sliding window works

lower edge =
smallest non
acknowledged
sequence number

upper edge = lower
edge + window size

Only sequence
numbers that are in
the window may be
sent

0123456789101112

0123(456789101112

0-56789101112

56789101112

m56789101112
0122345/6789101112

0123456 789101112

012345/6789101112

0123456/789101112
0123/456789101112
0123456789101112
012345678910 1112
0123456(78910/11 12
01234567/8910:11}12

Window size = 4’000 bytes; one packet is 1’000 bytes

A=

Window Usable part of the window

26

At time t4,

sender... to $=0
.............. X
=1

s=2 T 5 |
............ s=3A=-1,S - 1-2!
.............. >K. 112 |

- A=-1, SACK §1-3

Buffer

Window size = 4’000 bytes, one packet = 1’000 bytes
Sliding window was initialized at time ¢t

A. ...can send packet 4
B. ...cannot send packet 4

C. It depends on whether data
was consumed by application

D. Ich weiss nicht

Solution

Retransmission Resequencing

Buffer Buffer
S=0
| O; | \X -------------
L0;1 - T e rsacks | |
’ g=2"""" 4::1 |
| 0; 2 i [1 |
S=3A=-1, S ':1'2|
[0;2;3 | —— |12 |
............ |
| 0:2 |t*’ A=-1,SACK = 1-3' 1;2;3 |
; 1
5=0 deliver
. 0..3
| 2 | A=3 e | 0;1;2;3 |—>
&r
| 2; 4_ | tz%’
............. d l 4
Answer B (4 | deliver 4.

The window size is 4’000 B, namely here 4 packets.

At time t; packets-1, 1, 2 and 3 are acked. The window is packets
|0 ; 3]. Packet 4 is outside the window and cannot be sent. It has to
wait until the loss of packet 1 is repaired (at time t,)

Sender also needs a buffer (“retransmission buffer”); its size is the
window size.

28

Sliding Window is not sufficient to limit buffer

size at receiver

Data that is received in-
sequence remains in receive
buffer until consumed by
application (typically using a
socket “read” or “receive”)

A slow application could cause
buffer overflow

receive buffer

- 5—> Application reads

OTTTTTTTTITITTTT]

—>

pplication reads

Window size = 4’000 bytes

One packet =

= 1’000 bytes

29

Window Flow Control is used to prevent
receive-buffer overflow

TCP constantly adapts the size of the window by sending “window”
advertisements back to the source.

» Window size is set to available buffer size
» If no space in buffer, window size is set to O

This is called “Flow Control” = adapt sending rate of source to speed of receiver

Congestion Control (see later), which adapts rate of source to state of
network

30

1

o O O O o

o O O o o

NN

=alr=air=air=alir=
NN

R R
N MM NN

OO O OO O O

N[O || ||O |0

g Jd N9 J

g NN 9
c ©O0 ©0 o0 o
© OV VU VvV v

c 0 ©0 O o

© VW VvV VvV v

10

10

10
10
10
10
10

10
10
10
10
10

10

10

11

11

11
11
11
11
11

11
11
11
11
11

11

11

? — ack = -1, window = 2
ack = 0, window = 2
/ ack = 0, window = 4

ack = 2, window = 4

ack =4, window = 2

ack =6, window =0

1 unit of data = 1’000 bytes
1 packet = 1°000 bytes

31

MO NN T |

wvil || TdA| [uv] | w| [wl | wl | w

U] [W] [W] [W] [W R[] [[FR[[FR[F [O O

|| BB (NN

o

N| N

10

...................

|:| free buffer

ack = -1, window = 2. SEEQ [
P 32 [] [Hs.read()
ack = 0, win P 3‘2@[“] I:I
}l 520 [IO S0
s =1
s —— | - 3-2-10 Ininl
S=3 — | - 3-2-10 [[
2 wi _F 3-2.10 1 2 Dﬁ]] |j.read()
S=4 [Tl 3-2-10 1 2 B[]0 0O
H\, 3-2-10 1 2 B @[]
= 4, window=2
s=6 _— 3 .- 3-2-10 1 2 B @ E [
- 3-2-10 1 2 5 [
ack=6,w :: 3-2-10 1 2 3 4 5 6 ﬁﬁaﬂ(h

|:| data acked but not yet consumed

1 unit of data = 1’000 bytes
1 packet = 1’000 bytes

32

TCP Basic Operation, Putting Things Together

A

7

8001:8501(500) ack 101 win 6000 B
) : " bytes
2 101:201(100) ack 8501 win 4000 |...:8500 are available
, | 8501:9001(500) ack 201 win 14247 and consumed
4 9001:9501(500) ack 201 win 14247 ﬁx
5 9501:10001(500) ack 201 win 14247]
6| (0) ack 8501 sack 9001:9501 win 4000]
7 201:251(50) ack 8501 sack 9001:70001 win 4000
g 8501:9001(500) ack 251 win 14247
> > bytes
9l— 8501:10000 are
251:401(150) ack 10001 win 2500 available
_
app
70 |« (0) ack 10001 win 4000 consumes
bytes
14 10001:10501(500) ack 401 win 14247 8501:10000
" g bytes

10001:10500

are available

33

The picture shows a sample exchange of messages. Every packet carries the sequence number
for the bytes in the packet; in the reverse direction, packets contain the acknowledgements for
the bytes already received in sequence. The connection is bidirectional, with
acknowledgements and sequence numbers for each direction. So here A and B are both
senders and receivers.

Acknowledgements are not sent in separate packets (“piggybacking”), but are in the TCP
header. Every segment thus contains a sequence number (for itself), plus an ack number (for
the reverse direction). The following notation is used:

» firstByte”:”lastByte+1 “(“segmentDatalength”) ack” ackNumber+1 “win”
offeredWindowSise. Note the +1 with ack and lastByte numbers.

At line 8, A retransmits the lost data. When packet 8 is received, the application is not yet ready
to read the data.

Later, the application reads (and consumes) the data 8501:10001. This frees some buffer space
on the receiving side of B; the window can now be increased to 4000. At line 10, B sends an
empty TCP segment with the new value of the window.

Note that numbers on the figure are rounded for simplicity. In real examples we are more likely
to see non-round numbers (between 0 and 232 -1). The initial sequence number is not 0, but is
chosen at random.

34

In the absence of loss, and on a
link with capacity ¢ packets per
second, the window size required
for sending at the maximum
possible rate is...

n=RTT Xc

C

RTT
RTT

C
None of the above

Non lo so

moO N %
%%%

time

35

Solution

Answer A

If the window size is large
enough, the window is never fully
used and the sender can send at
rate c.

This case occurs when the total
amount of data in flight, ¢ X
RTT, is not larger than W, i.e.
when W = ¢ X RTT (i.e. Window
> bandwidth—delay product)

4 RTT > tlme

RN

If the window size is small, the
sender is blocked after sending a
full window. The sending rate in

. W .
this case is——. This case occurs
RTT
when W < ¢ X RTT

T

tlme

NI

36

3. TCP Connections and Sockets

TCP requires that a connection (= synchronization) is opened before
transmitting data
» Used to agree on sequence numbers and make sure buffers and window are
initially empty
The next slide shows the states of a TCP connection:

» Before data transfer takes place, the TCP connection is opened using SYN
packets. The effect is to synchronize the counters on both sides.

» The initial sequence number is a random number.

» The connection can be closed in a number of ways. The picture shows a graceful
release where both sides of the connection are closed in turn.

» Remember that TCP connections involve only two hosts; routers in between are
not involved.
There are many more subtleties (e.g. how to handle connection
termination, lost or duplicated packets during connection setup, etc—
see Textbook sections 4.3.1 and 4.3.2).

37

TCP Connection Phases

Connection

Connection
Release

Setup

Data Transfer

application
active open

lestablished) .

SYN, seqg=x

A 4

SYN seg=y, ack=x+l

active close

|fin wait 1

|fin wait 2|.

|time_waiﬂ

listen| Pa@ssive open

~[snc_rcva

ack=y+1
=.bstablished|
:\
<
FIN, seg=u
* [close wait
ack=u+l -
application close:
FIN seqg=v)
________ last ack
ack=v+1

A 4

38

flags

IP header (20 or 40 B + options)i

srce port dest port

sequence number

ack number
TCP
hlen| rsvd flags window header
checksum urgent pointer (20-Bytes +

, . options)
: options (SACK, ..) \ padding :v
e o o o o o o o o o o o o o o o e e e e e e e !

A

segment data (if any) <= MSS bytes

meaning

NS

CWR
ECN
urg
ack
psh
rst
syn
fin

used for explicit congestion notification
used for explicit congestion notification
used for explicit congestion notification
urgent ptr is wvalid
ack field is valid
this seg requests a push
reset the connection
connection setup
sender has reached end of byte stream

39

TCP Segment Format

The previous slide shows the TCP segment format.

*the push bit can be used by the upper layer using TCP; it forces TCP on the sending side to create a segment
immediately. If it is not set, TCP may pack together several SDUs (=data passed to TCP by the upper layer) into one
PDU (= segment). On the receiving side, the push bit forces TCP to deliver the data immediately. If it is not set, TCP
may pack together several PDUs into one SDU. This is because of the stream orientation of TCP. TCP accepts and
delivers contiguous sets of bytes, without any structure visible to TCP. The push bit used by Telnet after every end of
line.

= the urgent bit indicates that there is urgent data, pointed to by the urgent pointer (the urgent data need not be in
the segment). The receiving TCP must inform the application that there is urgent data. Otherwise, the segments do
not receive any special treatment. This is used by Telnet to send interrupt type commands.

= RST is used to indicate a RESET command. Its reception causes the connection to be aborted.
= SYN and FIN are used to indicate connection setup and close. They each consume one sequence number.
= The sequence number is that of the first byte in the data. The ack number is the next expected sequence number.

= Options contain for example the Maximum Segment Size (MSS) normally in SYN segments (negotiation of the
maximum size for the connection results in the smallest value to be selected) and SACK blocks.

*The checksum is mandatory
=The NS, CRW and ECN bits are used for congestion control (see congestion control module).

40

TCP Sockets

TCP is used by means of sockets,
like UDP.

However, TCP sockets are more
complicated because of the need
to open/close a connection

Opening a TCP connection

requires one side to listen (this
side is called “server”) and one
side to connect (called “client”)

At 1, client can use the
connection to send or receive
data on this socket

client

s=socket.socket()

v

s.connect(S,5003)

SYN
SYN ACK

server S

sl=socket.socket()

s1.bind(5003)

sl.listen()

conn=sl.accept()

é} ACK

41

The figure shows toy client and servers. The client sends a string of chars to the server which reads and
displays it.

socket(AF_INET,...) creates an IPv4 socket and returns a socket object if succesful
socket(AF_INETS,...) creates an IPv6 socket

bind(5003) associates the local port number 5003 with the socket; the server must bind, the client need
not bind, a temporary port number is allocated by the OS

connect() associates the remote IP address and port number with the socket and sends a SYN packet
send() sends a block of data to the remote destination
listen() declares the size of the buffer used for storing incoming SYN packets;

accept() blocks until a SYN packet is received for this local port number. It creates a new socket (in pink)
and returns the file descriptor to be used to interact with this new socket

recv() blocks until one block of data is ready to be consumed on this port number. You must tell in the
argument how many bytes at most you want to read. It returns a block of bytes with the bytes that are
effectively returned. It raises an exception when the connection was closed by the other end.

42

A New Socket is Created server S

by Acce pt() client sl=socket.socket()

s=socket.socket();

At 2, on server side, a new s1.bind(5003)

socket (conn) is created — will

be used by server to send or .
receive data. sl.listen()

\4

&

_ s.connect(S,5003)
conn is a connected socket, s1 : conn=sL.accept()

is @ non-connected socket | :

This example shows a simplistic l 2

program: client sends one s.send(...) y

message to server and quits; conn.recv()

server handles one client at a —

time. s.close() Y
conn.close()

A More Typical Server

TCP Server typically uses parallel threads
of execution to handle several TCP
connections + to listen to incoming
connections

client

=socket.socket();

v
connect(S,5003)

server S

1=socket.sockety()

s1.bind(5003)

sl.listen()

<&
<

~—

w.accept(
h ——— :

s.send(...) s L
S : !]
I . 1
s.close() T%—v conn.recv()
C (e —¥ R
L C v |
—_ c c 1 ,
qd
— Y conn.close();

44

How the Operating System views TCP Sockets

[Application program

App Connection
Connection App data requests d tp
i requests i data 1d=5 16 - =7

I IPv4 IPv4 IPv4 I IPv6 IPv6

socket socket socket socket socket

buffer buffer

’

() -
ort=32456 A
addressS YN\ \&%\sj 7

IPv4 packets &rl

IPv6 packets

45

TCP Connections and Segments

prot=TCP
m------- -+ TCP hdr TCP data

IP hdr IP data = TCP segment

TCP uses port numbers like UDP eg. TCP port 80 is used for web server. A TCP
connection is identified by: srce IP addr, srce port, dest IP addr, dest port.

TCP-PDUs (called TCP segments) have a maximum size (called MSS). 536 bytes by
default for IPv4 operation (576 bytes IPv4 packet), 1220 by default for IPv6
operation (1280 bytes IPv6 packets)

TCP, not the application, chooses how to segment data
TCP segments should not be fragmented at source

Modern OSs use TCP Segmentation Offloading (TSO) : the TCP code in the OS sends a possibly
large block of data to the network interface card (NIC). Segmentation is performed in the NIC with
hardware assistance (reduces CPU consumption of TCP).

46

TCP Offers a Streaming Service

Streaming Service: TCP accumulates bytes in send buffer until it decides to
create a segment

independent of how application writes data

On receiver side, data accumulates in receive buffer until application reads it —
data is not delineated, several small pieces of data sent by A may be received

by B as a single block —and conversely, a single block sent by A may be received
by B as multiple blocks.

A side effect is head of the line blocking : If one packet sent by A is lost, all data
following this packet is delayed until the loss is repaired.

47

For which types of apps is the streaming service a
drawback ?

an app using http/1 with one TCP connection per object

an app using http/2 with one TCP connection in total

a real time streaming application that sends one new packet every msec
Aand B

Aand C

Band C

All

None

- I 6o mm g O wm P

No lo sé

48

A TCP server is, by definition...

A. ...an application program that does
listen() and accept() on a TCP socket

B. ...an application program that does
receive() on a TCP socket

C. ...an application program that does
send() on a TCP socket

D. Aesv éepw

49

Solution

Answer F: (B and C) For http/2 with one single connection, head-of-the line
blocking can occur: if one packet is lost in the transfer of one object of the
page, the entire page download is delayed until the loss is repaired.

Head-of-the line blocking may also occur for a real-time streaming app and is
probably even worse: with TCP means, the loss of one packet delays all
subsequent packets until the loss is repaired (whereas the application would
prefer to skip the lost packet and receive the most recent one). Such an app
should use UDP.

Answer A. A server program can send, receive or both.

50

Why both TCP and UDP ?

Most applications use TCP rather than UDP, as this avoids re-inventing error
recovery in every application

But some applications do not need error recovery in the way TCP does it (i.e.
by packet retransmission)

For example: Voice applications / PMU streaming
Q. why ?

For example: an application that sends just one message, like name
resolution (DNS).
Q. Why ?

For example: multicast (TCP does not support multicast IP addresses)

51

Why both TCP and UDP ?

Most applications use TCP rather than UDP, as this avoids re-inventing error
recovery in every application

But some applications do not need error recovery in the way TCP does it (i.e. by
packet retransmission)

For example: Voice applications / PMU Streaming
Q. why ?
A. delay is important for interactive voice. Packet retransmission introduces too much delay

in most cases. PMU streaming sends a new packet every 20 msec, better to receive latest
packet than to repeat lost one.

For example: an application that sends just one message, like name
resolution (DNS).
Q. Why ?

A. TCP sends several packets of overhead before one single useful data message. Such an
application is better served by a Stop and Go protocol at the application layer.

For example: multicast (TCP does not support multicast IP addresses)
52

4. More TCP Bells and Whistles

TCP has been constantly improved since its inception in 1974. For example,
problems to be solved are

When to send a packet (application may write 1 byte into the socket; should

TCP make one packet ?) -> Nagle’s algorithm prevents making many small
packets.

When to send an ACK when there is no data to send in return ?
When to increase the window size (silly window syndrome avoidance)?
How to detect packet loss

How to choose initial sequence numbers (SYN cookies) to avoid denial of
service attack by SYN flooding

How to avoid three way handshake

We will see only the last three in detail; see textbook section 4.3.3 for the ones
we don’t see here.

53

We could say that TCP declares a packet lost when a
duplicate ACK is received with a SACK field. Is it a good idea ?

A.

Yes because it is likely that there

is some missing data

No as it may cause superfluous
retransmissions (some data could
simply be late -- out of order)

No because an ACK also could be

lost
N’ouzhon ket.

[++]

seq 8001:8501

le——

seq 8501:9001

ack 8501

seq 9001:9501

seq 9501:10001

seq 8501:9501

ack

8801 sack (9501:10001)

54

Solution

There is no “good” answer. Both A and B can be argued. This is why “Fast
Retransmit” was invented.

55

Fast Retransmit

Principle: when n duplicate ACKs are received, declare a loss
(Duplicate ACK = a TCP packet where the ACK value repeats a previously received ACK value)

The lost data is inferred from the SACK blocks
n =TcpMaxDupACKs is set by the Operating System (typically or 3)

retransmit
P1 P2 P3 P4 P5 P6 P3 P7

ack/~="?

sack/~3000:6000

1 2 3 4 5 6
all segments are 1000 bytes; TcpMaxDupACKs = 3

56

Loss Detection in TCP also uses timers

“Fast retransmit” detects most losses but not all
some bursts of losses are not detected
last packets that are lost are not detected
isolated packets that are lost are not detected

TCP also uses a retransmit timer, set for every packet transmission

when one timer expires this is interpreted as a severe loss (loss of channel).
All timers are reset and all data is marked as needing retransmission.

57

Round Trip Estimation

Why ? The retransmission timer must be set at a value larger than the round trip
time, but not too much

What ? RTT estimation computes an upper bound RTO on the round trip time
How ?
srtt : smoothed RTT

rtt: last measured RTT
rttvar: 1 error bound

1 1
a=gb=pn=4

rttvar = (1 — B) rttvar + 8 |srtt — rtt|
srtt = (1 —) srtt + a rtt
rto = srtt + n rttvar

58

Sample RTO

seconds
14
12 + RTO
10 T ’
8 pu
SampledRTT
6 -t ’
4 |
2 pu
O i
- <~ <~ <~ <~ <~ <~ <~ <~ <~ -~ -~ - -~ ‘-seconds
~ AN ™M < O O N 00 O o - AN O <

59

When does Fast Retransmit Fail ?

Extremely rarely, it is quasi-optimal

B. It fails to detect the loss extremely rarely, but it may often take a long time
to detect.

C. When one of the last segments of an application layer block is lost, fast
retransmit does not detect it.

D. It may often fail due to packet re-ordering

= a_q?)s:i‘k’

60

Solution

Probably Answer C

When one of the last segments of a block is lost, fast retransmit cannot detect it since
there is no packet transmission after the end of the block. The loss will be detected by
timeout, which will take a long time. E.g.: query sent to a search engine.

Tail Loss Probe is a method that can be used to avoid such a problem: when the probe
timeout (PTO, =2RTTs) expires, a "probe segment" is sent (a retransmission of a non
ack’ed packet), in order to trigger new acks and fast retransmit.

Packet re-ordering is not rare but is usually very small (less than 1 ms) as it is due to
load balancing inside machines. Equal cost multipath avoids to send packets of a TCP
connection on different paths when per flow load balancing is enabled. RACK (Recent
ACK) is an alternative to Fast Retransmit, which is based on the observation that re-
ordering is typically very limited in time and decides that a packet is lost shortly after
an out-of-sequence packet is acked. It bases retransmission decisions on timings, not
on sequence numbers.

61

SYN Cookies

Why ? mitigate impact of SYN flood attack: lots of bogus SYN packets
from invalid source addresses sent to a server.

When a TCP server receives a SYN packet, it should remember the details
of the connection (source IP address, port, seq number) and stores them
in kernel space. If SYNs are bogus, they remain stored until timeout
occurs. The listen queue is full and legitimate SYN packets are dropped.
Server is out !

What ? with SYN cookies, TCP server does not keep state information
after receiving a SYN packet. State is encoded in the Seg Number field,
using a cryptographic function and returned to client (the “cookie”). If
SYN is valid, 3@ ack contains the state in the ACK.

62

SYN Cookies Encode State in Seq of SYN ACK

application
active open

passive open

S & listen
ﬁ % SYN, seg=x
g syn_sent| . > |snc_rcvd
§ SYN seqﬁ) ack=x+1
E established| . ack=y+1
i+ > [established
g
o

State (called SYN cookie) is written in y

y = (5 bit) t mod 32 | |(3 bits) MSS encoded in SYN | |(24 bits) cryptographic
hash of secret server key, of t (timestamp) and client IP address and port
number, the server IP address and port number.

Server drops state and sends SYN cookie=y in SYN ACK. Client sends ack=y+1.
Server verifies that hash is valid; if so creates socket, using the MSS recovered
from the cookie.

If SYN was bogus, no ack follows and damage is reduced to loss of computation

but no loss of listen queue availability.
63

Server does not implement SYN cookies. If the ACK (3) is

never sent, server will
1) retransmit SYN ACK
2) keep state information until timeout occurs

application

5 R active open : assive open
58 Listen? P
o 9 SYN, seq=x
, =

g SYN seqg=y, ack=x+l
[&} d

¢ [established| ack=y+l /5)

2 a (=7] [established
% e o

m O O ® »
[N
Q)
D)
o
ND

64

application

. g R active open : passive open
Solution i3 e

o @ SYN, seq=x

g SYN seg=y, ack=x+1l

S L
4 |established| ack=y+1 m
”G 4 established
% a—— >

Answer C. Server that does not implement SYN Cookies: When the server sends the SYN-ACK
packet, it does all the usual stuff done by TCP to test whether a packet containing some data is
lost. Note that this packet contains no data but it is treated as if it would (this is why the
ACK(3) number is y+1 and not y). If SYN-ACK is lost, server receives no ack and retransmits the

SYN-ACK.

If the server implements SYN Cookies, it keeps no state information after sending the SYN-ACK;
therefore, if the SYN-ACK is lost or if the ACK (3) is lost, the server does not retransmit.

In most cases, the client application sends data when the SYN ACK is received so even if the
ACK(3) is lost, the next segment of data serves as an ACK and the application on the client side
will detect the loss. Applications that do not have this property are for example SSH or mySQL.
Such applications hang on the client side if ACK(3) is lost. Hopefully such apps implement a

timeout to detect such deadlocks.

65

With SYN cookies, the response time of SYN-ACK is...

Larger than without SYN cookies
Smaller than without SYN cookies

The same

o0 ®p

| weiss nid

66

Solution

Answer A. The SYN-cookie-enabled server must perform a verification of the
cryptographic hash and create the state, which is more time consuming than
without syn cookies.

67

TCP Fast Open (TFO)

Why ? Avoid latency of 3-way handshake when opening
repeated connections.

How? In first SYN_ACK, TCP client receives and caches a cookie that contains
authentication tagt = MAC (k, ¢) computed by server with secret key k
(unknown to client) and client IP address c.

TFO TCP Client TFO TCP Server
Client can send data in SYN packet. SYN
>
/i tag t in TCP option
When receiving SYN ahd tag t, server GET /hello.htm
knows that this client is a real one and SYN ACK
not spoofed. Server can send data already < server data
in SYN-ACK.
ACK
>
< ACK
more data

MAC= Message Authentication Code

5. Secure Transport

TCP has no security.

Needs to be complemented [CTRN———
Wlth a secCu rlty |ayer SUCh as <= ¢ =2= | @ Berner Kantonalbank AG [CH] v bekb.ch
Transport Layer Security (TLS) http used over TLS and port 443 = https
(TLS is in application layer).
TLS adds to TCP: HTTP HTTP
 Confidentiality: data is encrypted TLS TLS
with symmetric encryption; using TCP TCP
secret keys created on the fly for this session >

e Authentication: data is protected against forgery
+ identity of end-system is authentified

Crypto Background

Symmetric cryptography (e.g. AES) uses a secret key, known only by sender and
receiver. Messages are encrypted using the secret key and can (only) be
decrypted using the same secret key; this provides confidentiality. Can also be
used to authenticate a message by adding a verification tag computed with the
secret key, which can be verified using the same secret key. It is very fast but
has the problem of key distribution.

Asymmetric cryptography (e.g. RSA) uses two different keys: one can be used
for encryption, the other for decryption. One of the keys must be secret
(private), the other one is public. The private key cannot be computed from the
private key other than by brute-force (in principle). This eases the problem of
key distribution but encryption/decryption is computationally intensive.

In all cases, keys must be long enough to resist brute-force attacks today (e.g.
256 bits for AES, 2000 bits for RSA).

70

TLS uses private/public key pairs +
certificate

Public key K x

% V;:rify Ky using CA's public key ;e

Sample session keys ¢4, ¢,
y = Encryptg, (£1,%2) y

> (£1,42) = Decrypty, ()
¢ = AES, (srr2mroB0), t = MAC,, (c)

Encrypted message 3

1. Lisa verifies that K y is indeed the key of bank by using a certificate,
which contains public key of bank signed by Certification Authority
(CA). Lisa verifies signature of certificate by using CA’s public key, pre-
installed in Lisa’s web browser.

Verification tag

2. Lisa uses public-key of bank to share secret session keys used to
encrypt and authenticate the e-banking transaction.

3. Two-way communication uses secret keys

71

TLS 1.3

Typically uses one handshake before
sending data.

agree on cryptographic
suites to be used

Many old cipher suites are no longer secure
—important to be sure that TLS software is
up-to-date.

TLS 1.3 client

TLS 1.3 server
ClientHello
cipher suite, key share >
ServerHello
<cipherSpec, server certify,
key share, Finished
application data
< >

72

TLS Sockets

TLS sockets

(also called SSL
sockets) are
transformed
“wrapped”
from sockets.

client

s=socket.socket();

ss=ssl.wrap_socket(s,CA cert)

v

ss.connect(S,5003)

YN

/

server S

create context object
with certificate and keys

sl=socket.socket()

s1.bind(5003)

sl.listen()

&
L2

conn=sl.accept()

1)

sconn= context.
wrap_sockets(conn)

@ L SYN ACK \
i ACK
c:lient hello
@ server hello___
.
ss.send(...)

A

ss.close()

—>

sconn.recv()

A 4

sconn.close();

73

On the client side, the socket s is transformed into a TLS socket using ssl.wrap_socket. This
transformation requires the client to give the CA certificate. The connect() method does two
things at a time: open the TCP connection and start the TLS handshake.

On the server side, things are different as the TCP socket used for communication is created
only after accept().

At point 1, the client has opened the TCP connection and sent the TLS client hello but not yet
received the TLS server hello.

At point 2, the server has accepted the TCP connection but not yet started the TLS handshake.
It can continue with the TLS handshake only after wrapping the new socket conn into a TLS
socket sconn. This requires the server to provide its pair of keys and its certificate.

The client can send data only when the handshake is completed (point 3).

74

With https/TLS1.3, how many RTTs are required
before data transfer can occur?

Tmo o ® P

1
2
3
4
o)
|

don’t know

75

Solution

Answer B

1 RTT for opening the TCP connection

1 RTTs (at least) for establishing
the TLS session

With TLS 1.3 it takes at least 2 RTTs before

communication starts (assuming no packet
loss)

TLS 1.3 client

cipher suite, key share

ServerHello

TLS 1.3 server
SYN >
tag t in TCP option
GET /hello.htm
< SYN ACK
server data
ACK
>
ClientHello
P

‘cipherSpec, server certify,
key share, Finished
application data

76

A Digital Certificate for BEKB Contains...

A. The public key of BEKB
B. The identity of BEKB (official name as of Registre du Commerce)
C. The public key of the issueing CA

D. Aand B
E. Aand C ~ Publickey K
Vérify Ky using CA's public key Bscit
F. Band C % Sample session keys #;, >
y = Encryptg, (£1,£2) Y
G. All > (£1,€3) = Decrypty, (¥)
¢ = AESp, (tsrr2m1080), t = MACy, (€)
H. None B
Encrypted message Verification tag
l. 1 don’t know

77

Solution

Answer D, in principle.

The certificate binds the identity to a public key, so it must contain A and B.
However, the CA’s public key must be pre-installed using some secure
procedure (such as the original system installation). Even if it is present in the
certificate, only the pre-installed CA public key should be used.

78

6. Error Recovery

We have seen how TCP repairs losses
We now discuss why this is so, and sometimes why it is not so

79

The Layered Model Transforms Errors into Packet Losses

Packet losses occur due to This can be done either
» error detection by MAC » end to end : host A sends 10 packets to host B.
» buffer overflow in bridges and routers B verifies if all packets are received and asks

for A to send again the missing ones.

» Other exceptional errors may occur too
» or hop by hop

Therefore, packet losses must be repaired.

A R1 R2
P4 P4
o Pt o Pt
P3 P3
P4
\ P4 \ /P3 is miSSing\>
P3
———| P4
P3 is missing T m\’ P3
‘ — Px—| P3
P3—— P3 \’E
R

80

The Case for End-to-end Error Recovery

The end-to-end philosophy of the internet says: keep intermediate systems as
simple as possible

IP packets may follow parallel paths, this is incompatible with hop-by-hop
recovery.

» R2 sees only 3 out of 7 packets but should not ask R1 for re-transmisison

5
= - / R4 —=

R3

81

The Case for Hop-By-Hop Error Recovery

There are also arguments in favour of hop-by-hop strategy. To understand
them, we will use the following result.

Capacity of erasure channel: consider a channel with bit rate R that either
delivers correct packets or loses them. Assume the loss process is stationary,

such that the packet loss rate isp € [0; 1]. The capacity is R(1 — p)
packets/sec.

This means in practice that, for example, over a link at 10Mb/s that has a packet
loss rate of 10% we can transmit up to 9 Mb/s of useful data.

Furthermore, this capacity is obtained by a scheme (such as TCP) which
retransmits lost packets.

82

The Capacity of the End-to-End Path

We can now compute the capacity of an end-to-end path with both
error recovery strategies.

Assumptions: same packet loss rate p on k links; same nominal bit
rate R. Losses are independent.

Q. compute the capacity with end-to-end and with hop by hop error
recovery.

A k links
R1 R2 R3 R4 R5 R6

— Loss probability p —
Transmission rate R

The capacity Cqwith hop-by-hop error recovery is ...

A k links

B
— E
R1 R2 R3 R4 RS R6

-~ Loss probability p 7
Transmission rate R

A C;,=R(1 —-p)*
B. C; =R(1—p)
C. C; =R —kp)
D. Nao sei

84

The Capacity of the End-to-End Path

A k links B
1
p——y R1 R2 R3 R4 R5 R6 pa——y

— Loss probability p 7
Transmission rate R

Answer B

1. With hop-by-hop error recovery:
Capacity of one hop after error recovery is R(1 — p)
The capacity of the end-to-end path is also R(1 — p) [the capacity of a
concatenation of loss-less segments is the min of the capacity of each
segment]

2. With end-to-end recovery
The probability that a packet is not lost is (1 — p)*
The probability that a packet is lostis g = 1 — (1 — p)*
The capacity of the pathis R(1 —q) = R(1 — p)*

85

End-to-end Error Recovery is Inefficient when Packet

Error Rate is high

k links
— R1 R2 R3 R4 RS R6
— Loss probability p 7
Transmission rate R
k | Packetloss |C; (end-to- |C, (hop-
rate end) by-hop)
10 {0.05 0.6 R 0.95R
10 |0.0001 0.9990 R 0.9999 R

Q. How can the conflicting arguments for and against hop-by-hop error

recovery be reconciled ?

End-to-end Error Recovery is Inefficient when Packet

Error Rate is high

k links

— R1 R2 R3 R4 RS R6
— Loss probability p 7
Transmission rate R
k Packetloss | C; (end-to- | C, (hop-
rate end) by-hop)
10 {0.05 0.6 R 0.95R
10 |0.0001 0.9990 R [0.9999 R

Q. How can the conflicting arguments for and against hop-by-hop error

recovery be reconciled ?

A. Repair losses locally only on links with high loss rates, i.e. wireless

Where is Error Recovery located in the TCP/IP
architecture ?

The TCP/IP architecture assumes that

1. The MAC layer provides error—free packets to the network layer

2. The packet loss rate at the MAC layer (between two routers, or between

a router and a host) must be made very small. It is the job of the MAC
layer to achieve this.

3. Error recovery must also be implemented end-to-end.

Thus, packet losses are repaired:

At the MAC layer on lossy channels (wireless)
WiFi repairs losses with a repetition mechanism similar to TCP but
simpler, window = 1 packet

In the end systems (transport layer by TCP or application layer if UDP is
used).

88

Conclusion

The transport layer in TCP/IP exists in two flavours
reliable and stream oriented : TCP
unreliable and message based: UDP

TCP uses : sliding window and selective repeat; window flow control; congestion
control —see later

TCP offers a strict streaming service and requires 3 way handshake

Other transport layer protocols exist but their use is marginal: e.g. SCTP (reliable
+ message based)

Some application layer frameworks are a substitute to TCP for some

applications: e.g. QUIC (reliable and “message” based — see Appli), websockets
(see lab).

42

