
On the Duality of OS 
Structures 

Mark Sutherland*
15. 10. 2020

*Based on slides by Marios Kogias & Rishabh Iyer



Paper Recap

o Two rough models of OS designs
v Message-oriented

v Procedure-oriented 

o Two models are duals 
v Program in one model has direct counterpart (dual) in other

o Dual programs:
v Are logically identical

v Can be implemented to have similar performance

2



Application’s Perspective

3

Can applications be agnostic to what’s contained in the blue box?



How is this relevant to modularity?

o Message Passing enforces modularity
v All communication via explicit messages

v Modules are isolated 

v Propagation of errors is reduced

oWhat other components of the stack are modular?
v For message-oriented? For procedural?

4



What might they have missed?
o Claim: the two can have equal performance given 

equivalent scheduling
v Brainstorm: what might not be sufficiently discussed?

o How might modern systems make this relevant again?
v CPU performance growth since 1979
v Criticality of (re)scheduling operations
v Applications don’t often use the same data formats.

Need a common representation for messages

5



Designing good interfaces

oWe discussed how server interfaces are defined (IDLs)

o Design considerations for message passing systems:
v How do I name processes I want to communicate with?

vWhat is the message format?

v Semantics of asynchronous operations?

6



Further Interesting Reading
oThe Microkernel (Barrelfish) – SOSP’09
oLegoOS – OSDI’18
oSnap: Microkernels for Networking – SOSP’19

7



Last year’s slides…

8



Duality

9

Can be thought of as duality of IPC mechanisms



Shared Memory vs Message Passing

o Decades-old debate on the right IPC mechanism
v Have also been proven to be duals 

o Shared memory:
vWrites to local memory/registers are globally visible

v Communication is implicit

o Message passing:
v Communication must be explicitly specified. 

v Must communicate with a process to share data with it

10


