On the Duality of OS
Structures

Mark Sutherland*®
15.10.2020

*Based on slides by Marios Kogias & Rishabh lyer

Paper Recap

o Two rough models of OS designs
“* Message-oriented

** Procedure-oriented

o ITwo models are duals

“* Program in one model has direct counterpart (dual) in other

o Dual programs:
“* Are logically identical

% Can be implemented to have similar performance

Application’s Perspective

apparent flow

call .]
Client b return Server
A A
call return return call
Interface
v v
Client Stub Server Stub
call T return return v T call
RPC Runtime ®» RPC Runtime
Library |‘ Library
network
messages

[Can applications be agnostic to what’s contained in the blue box!?]

3

How is this relevant to modularity?

o Message Passing enforces modularity

¢ All communication via explicit messages
¢ Modules are isolated

¢ Propagation of errors is reduced

o What other components of the stack are modular?

¢ For message-oriented?! For procedural?

What might they have missed!?

o Claim: the two can have equal performance given
equivalent scheduling

¢ Brainstorm: what might not be sufficiently discussed?

o How might modern systems make this relevant again?
% CPU performance growth since 1979
¢ Criticality of (re)scheduling operations
¢ Applications don't often use the same data formats.
Need a common representation for messages

Designing good interfaces

o We discussed how server interfaces are defined (IDLs)

o Design considerations for message passing systems:
¢ How do | name processes | want to communicate with?
¢ What is the message format?

¢ Semantics of asynchronous operations?

Further Interesting Reading

o 'he Microkernel (Barrelfish) — SOSP'09

olLegoOS — OSDI'1 8
oSnap: Microkernels for Networking — SOSP' |9

Last year’s slides...

Duality

Message-oriented system Procedure-oriented system
Processes, CreateProcess Monitors, NEW/START
Message Channels External Procedure identifiers
Message Ports ENTRY procedure identifiers
SendMessage; AwaitReply . simple procedure call
(immediate%

SendMessage; . . . AwaitReply FORK; . .. JOIN

(delayed)

SendReply RETURN (from procedure)
main loop of standard resource monitor lock, ENTRY attribute

manager, WaitForMessage statement,
case statement

arms of the case statement ENTRY procedure declarations
selective waiting for messages condition variables, WAIT, SIGNAL

Can be thought of as duality of IPC mechanisms

Shared Memory vs Message Passing

o Decades-old debate on the right IPC mechanism

¢ Have also been proven to be duals

o Shared memory:
¢ Writes to local memory/registers are globally visible
¢ Communication is implicit

o Message passing:
s Communication must be explicitly specified.

¢ Must communicate with a process to share data with it

