
Modularity through Client-Server

μ-kernels

What is a μ-kernel and what are the advantages of the μ-kernel design?

•Enforcing modular system structure

•Enforced modularity/Fault isolation

On μ-Kernel Construction

•Main Ideas
• Minimality Principle

• Address Spaces

• Threads & IPC

• Unique Identifiers

• Misconceptions:
• Performance

Principles

• Independence
A programmer must be able to implement an arbitrary subsystem S in such a
way that it cannot be disturbed or corrupted by other subsystems S’

• Integrity
There must be a way for S

1
to address S

2
 and establish a communication

channel which can neither be corrupted or eavesdropped by S’

Compare the μ-kernel with the exokernel design

“The presented design shows that it is possible to achieve well performing μ-kernels
through processor-specific implementations of processor-independent abstractions.”

How does a μ-kernel guarantee integrity and authentication for
the IPC?
- Authentication is done through UID. The kernel controls the UIDs, apps/servers cannot forge it.
- Address space enforces integrity. IPC can be done with or without data copying. One way is to

have the kernel copying the data across the address spaces of the sender/receiver. The other
way is to have shared memory between the sender/receiver, and IPC is done through the shared
memory without copies. In both cases, the data is either in the address space of the sender or
receiver during the IPC, no other subsystems can eavesdrop the IPC since the data is never
passed in their address space.

How do other client-server systems achieve those properties?
- Try to answer the question on your own. The answer is on next slides

How do other client-server systems achieve those properties?

- One way I can think of is to use encryption to ensure integrity of the communication channel

and using signature for authentication.

What is the underlying assumption in the paper in order to
guarantee the two principles?

- The kernel and the hardware has to be trusted.
- The kernel has to be trusted to be correct and non-malicious since these two principles are

enforced by the kernel. For example, if the kernel has a bug, it might forward the IPC msg
to a server A to another server B by mistake, which will break the integrity principle.

- The hardware has to be trusted since it also participates in enforcing the principles. For
example, the hardware translates the virtual memory address to the physical memory
address, if there is a bug in the translation hardware, virtual memory address of app A
might be translated to a physical address mapped to another app B, which breaks the
independence principle.

Check Reflections on Trusting Trust

https://dl.acm.org/citation.cfm?id=358210

What is a trusted intermediary?
- A single service that has multiple clients brings up another technique for enforcing

modularity: the trusted intermediary, a service that functions as the trusted third party
among multiple, perhaps mutually distrusted, clients. The trusted intermediary can control
shared resources in a careful manner.

- One example of trusted intermediary is the exokernel. The exokernel serves
mutually-distrusted clients, i.e., the libOSes. And it safely multiplexes the shared hardware
resources among libOSes.

Who is a trusted intermediary in the μ-kernel case?
- One example is the microkernel itself. It serves mutually-distrusted clients, i.e., the

apps/servers. It protects the shared resources such as memory.
- Another example could be a filesystem server. It serves mutually-distrusted users, and it

protects the files and only allow users with the right permissions to access files.

Design Project

Design a μ-kernel service (could be implemented as one or multiple
servers) that provides networking functionality to the programs
running on the system, e.g., a web server. Think about the abstractions
that the networking service will expose, the IPC mechanism, and how
to achieve integrity.

Some details to think of regarding the IPC: Should you use synchronous
or asynchronous IPC? Should the IPC be based on shared-memory or
not? How should the program check for data availability, via polling or
interrupts?

