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Problem 1.

(a) It is easy to check that W is an i.i.d. process but Z is not. As W is i.i.d. it is also
stationary. We want to show that Z is also stationary. To show this, it is sufficient
to prove that the distribution of the process does not change by shift in the time
domain.

pZ(Zm = am, Zm+1 = am+1, · · · , Zm+r = am+r)

=
1

2
pX(Xm = am, Xm+1 = am+1, · · · , Xm+r = am+r)

+
1

2
pY (Ym = am, Ym+1 = am+1, · · · , Ym+r = am+r)

=
1

2
pX(Xm+s = am, Xm+s+1 = am+1, · · · , Xm+s+r = am+r)

+
1

2
pY (Ym+s = am, Ym+s+1 = am+1, · · · , Ym+s+r = am+r)

= pZ(Zm+s = am, Zm+s+1 = am+1, · · · , Zm+s+r = am+r),

where we used the stationarity of the X and Y processes. This shows the invariance of
the distribution with respect to the arbitrary shift s in time which implies stationarity.

(b) For the Z process we have

H(Z) = lim
n→∞

1

n
H(Z1, · · · , Zn)

= lim
n→∞

1

n
H(Z1, · · · , Zn | Θ)

=
1

2
H(X0) +

1

2
H(Y0) = 1.

W process is an i.i.d process with the distribution pW (a) = 1
2
pX(a) + 1

2
pY (a). From

concavity of the entropy, it is easy to see that H(W ) = H(W0) ≥ 1
2
H(X0)+ 1

2
H(Y0) =

1. Hence, the entropy rate of W is greater than the entropy rate of Z and the equality
holds if and only if X0 and Y0 have the same probability distribution function.

Problem 2.

(a) We have ρ(X∞1 ) = 0. We show this by showing that ρ(X∞1 ) ≤ δ for any δ > 0. To
see the last statement, build an invertible FSM which “recognizes” a string of type
“ab...ab” for a particular even length, call it L, and outputs lets say “0” at the end
of this string and returns to the starting state. Hence this machine will output an
infinite string of “0” when the input is X∞1 . From each state (including the starting
state) of the chain which recognizes the special string make an edge back to the
starting state in the case the next input is not the correct one. The output for each
such edge is 1 + dlogLe bits long, the first bit is 1 to indicate that it is not the
special path and on the next dlogLe bits we give the index of the state (in binary
representation) from which the return edge is drawn. This machine is clearly lossless
and has a compressibility of 1/L for the desired sequence.



(b) A machine as described above will have ρM(X∞1 ) = 1/4. In fact, one cannot do better
than this. Consider a cycle, when from a given state we get back to the same state.
During such a cycle we have to output at least one symbol, because the machine has
to be information lossless. In an L state machine we eventually create such a cycle
within at most L steps. This means that we output at least one symbol for every L
input symbols, so ρM(X∞1 ) ≥ 1/L.

(c) We have ρLZ = 0 since compressibility is non-negative and we know that the com-
pressibility of LZ is at least as good as that of any FSM, i.e., we know that ρLZ(X∞1 ) ≤
ρ(X∞1 ).

(d) The dictionary increases by 1 every time and has size 2 in the beginning. Hence, if
we look at lets say c steps of the algorithm then we need in total

c∑
i=1

dlog(1 + i)e ≤ c log(2(c+ 1))

bits to describe the output.

What are the words which we are using. Note that the parsing is a, b, ab, aba,
ba, bab,. . . Note that in average at most every second step the length of the used
dictionary word increases by 1, i.e., we have a linear increase in the used dictionary
words. Therefore, if we compute the total length which we have parsed after c steps,
this length increases like the square of c.

It follows that the ratio of the total number of bits used divided by the total length
described behaves like 1/c, i.e., it tends to 0.

Problem 3.

(a) Let pi = ni

n
. Then

1 = (p1 + p2 + · · ·+ pK)n
(a)
=

∑
n1,n2,...,nK
s.t.

∑
ni=n

(
n

n1n2 . . . nK

)
pn1

1 p
n2
2 . . . pnK

K

≥
(

n

n1n2 . . . nK

)
pn1

1 p
n2
2 . . . pnK

K

≥
(

n

n1n2 . . . nK

)
2n1 log(p1)+n2 log(p2)+···+nK log(pK)

≥
(

n

n1n2 . . . nK

)
2−nh(p1,p2,...,pK),

where (a) is the binomial expansion. This proves our claim.

(b) For a random sequence of length n, U1U2 . . . Un, we encode the number of occurrences
of the first (K − 1) letters, denoted N1, N2, . . . , NK−1, since we get the last letter for
free (NK = n−N1−N2− · · · −NK−1). For each letter we need at most dlog(n+ 1)e
bits. Now that we know the number of times each letter appeared in the sequence
we need to encode the index of this specific sequence among all sequences having the
same numbers of letter occurrences (N1, . . . , NK−1). Since there are

(
n

N1N2...NK

)
of

those sequences then we need at most
⌈
log
((

n
N1N2...NK

))⌉
bits.
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Hence the total length L of the codeword is

L = (K − 1)dlog(n+ 1)e+

⌈
log

((
n

N1N2 . . . NK

))⌉
.

The expected length is

E(L) = (K − 1)dlog(n+ 1)e+ E
(⌈

log

((
n

N1N2 . . . NK

))⌉)
≤ (K − 1) (log(n+ 1) + 1) + E

(
log

((
n

N1N2 . . . NK

)))
+ 1

(a)

≤ (K − 1) log(n+ 1) +K + E
(
nh

(
N1

n
,
N2

n
, . . . ,

NK

n

))
(b)

≤ (K − 1) log(n+ 1) +K + nh

(
E
(
N1

n
,
N2

n
, . . . ,

NK

n

))
where (a) is due to the first part of the exercise and (b) is due to Jensen’s inequality.

For a random sequence U1U2 . . . Un, the number of occurrences of a particular letter
ui is a random variables that can be written as the sum of indicator functions which
take the value 1 with probability qi

Ni =
n∑
j=1

1{Uj=ui}.

Hence

E
(
Ni

n

)
=

∑n
j=1 E

(
1{Uj=ui}

)
n

= qi.

Therefore, the expected codeword length per letter is

1

n
E(L) ≤ (K − 1)

log(n+ 1)

n
+
K

n
+ h (q1, q2, . . . , qK) .

This shows that limn→∞
1
n
E(L) ≤ h(q1, q2, . . . , qK) = H(U). Since the source is i.i.d

then H(U) = limn→∞H(U1U2 . . . Un). This proves the optimality of this compression
code for i.i.d sources.

(c) If the source is not i.i.d then H(U) 6= limn→∞H(U1U2 . . . Un). Hence, the code is not
necessarily optimal.

Problem 4. Since given X, one can determine Y from Z and vice versa, H(Y |X) =
H(Z|X) = H(Z) = log 3, regardless of the distribution of X. Hence the capacity of the
channel is

C = max
pX

I(X;Y )

= max
pX

H(Y )−H(Y |X)

= log 11− log 3

which is attained when X has uniform distribution. The same result can also be seen by
observing that this channel is symmetric.
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Problem 5. Denote the capacity achieving distributions for Channel 1 and 2 as p∗X1
(x1)

on X1 and p∗X2
(x2) on X2 respectively. This means

I(X1;Y1)
∣∣
p∗X1

(x1)
= C1 and I(X2;Y2)

∣∣
p∗X2

(x2)
= C2

With time sharing (or flipping a coin Λ with λ probability of selecting Channel 1), we
can use Channel 1 for λ fraction of the time and Channel 2 for λ̄ = 1 − λ fraction of the
time. So this new random variable can be described as

pΛ(k) =

{
λ if k = 1

λ̄ if k = 2

The joint probability distribution of Λ, X, Y can now be written as the following.

pΛ,X,Y (k, x, y) = pΛ(k)pX|Λ(x|k)pY |X,Λ(y|x, λ)

For any choice of input distribution on X1 and X2, the marginal distribution of Y is
expressed as

pY (y) =
∑

x∈X ,k∈{1,2}

pΛ,X,Y (k, x, y) =
∑

x∈X ,k∈{1,2}

pΛ(k)pX|Λ(x|k)pY |X,Λ(y|x, λ)

=
∑
x∈X

pΛ(1)pX|Λ(x|1)pY |X,Λ(y|x, 1) +
∑
x∈X

pΛ(2)pX|Λ(x|2)pY |X(y|x, 2)

=
∑
x∈X

λpX|Λ(x|1)pY |X,Λ(y|x, 1) +
∑
x∈X

λ̄pX|Λ(x|2)pY |X,Λ(y|x, 1)

=
∑
x1∈X1

λpX1(x1)pY1|X1(y|x1) +
∑
x2∈X2

λ̄pX2(x2)pY2|X2(y|x2)

= λpY1(y) + λ̄pY2(y)

To calculate H(Y ), the following steps can be used.

H(Y ) =−
∑
y∈Y

pY (y) log pY (y)

=−
∑
y∈Y1

λpY1(y) log λpY1(y)−
∑
y∈Y2

λ̄pY2(y) log λ̄pY2(y)

=− λ log λ− λ̄ log λ̄− λ
∑
y∈Y1

pY1(y) log pY1(y)− λ̄
∑
y∈Y2

pY2(y) log pY2(y)

= h2(λ) + λH(Y1) + λ̄H(Y2)

Here, h2(λ) is the binary entropy function as h2(λ) = −λ log λ − λ̄ log λ̄. Similarly, to
calculate H(Y |X), observe the following steps.
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H(Y |X) =−
∑

y∈Y,x∈X

pY,X(y, x) log pY |X(y|x)

=−
∑

y∈Y,x∈X

pY |X(y|x)pX(x) log pY |X(y|x)

=−
∑

y∈Y,x∈X

pY |X(y|x)(λpX1(x) + λ̄pX2(x)) log pY |X(y|x)

=− λ
∑

y∈Y1,x∈X1

pY1|X1(y1|x1)pX1(x1) log pY1|X1(y1|x1)

− λ̄
∑

y∈Y2,x∈X2

pY2|X2(y2|x2)pX2(x2) log pY2|X2(y2|x2)

= λH(Y1|X1) + λ̄H(Y2|X2)

This shows that

I(X;Y ) = H(Y )−H(Y |X) = h2(λ) + λ(H(Y1)−H(Y1|X1)) + λ̄(H(Y2)−H(Y2|X2))

= h2(λ) + λI(X1;Y1) + λ̄I(X2, Y2)

Again, for this generic expression which is valid for any input distribution on X1 and
X2, we can find the optimal λ by taking the derivative and setting to 0 as I(X;Y ) is
concave with respect to λ.

∂I(X;Y )

∂λ

∣∣∣
λ∗

= log

(
1− λ∗

λ∗

)
+ I(X1;Y1)− I(X2;Y2) = 0

λ∗ =
1

1 + 2I(X2;Y2)−I(X1;Y1)

The substitution of λ∗ in I(X;Y ) gives us

I(X;Y )
∣∣
λ∗

= log2(2I(X1;Y1) + 2I(X2;Y2)).

Note that this generic expression can be maximized using the capacity achieving distribu-
tions as p∗X1

(x1) and p∗X2
(x2) both maximize I(X1;Y1) and I(X2;Y2) independently. There-

fore
C = log2(2C1 + 2C2).
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