LECTURE 5

YASH LODHA

1. THE TANGENT BUNDLE AS A SMOOTH VECTOR BUNDLE
Our goal now will be to show that the tangent bundle is a smooth vector bundle.

Proposition 1.1. Let M be a smooth manifold of dimension n. The tangent bundle T M has a natural topology
and smooth structure, making it a smooth 2n-dimensional bundle with the natural projection map m: TM — M.
This makes it a smooth vector bundle of rank n.

Proof. We shall define the smooth charts for TM. Let (U, ¢) be a smooth chart for M. Then we define the map
! ,
®:7 ' (U) - R*" (I)(UZ@ p) = (0(p)v)  v=(vE;)

We define the following basis of the topology: the open sets in this basis are the inverse images of open balls in
R2" under the maps ® as above. So by construction, each such map ® is a homeomorphism onto its image. It
is easy to check that this is a basis and that the resulting topology is second countable and Hausdorff.

So for the smooth chart (U, $) for M we have a smooth chart (7=1(U), ®) defined as above. Let (V,) be
another smooth chart for M and let (7=1(V), ¥) be the corresponding smooth chart for TM. Let

n=1po¢ l:p(UNV)—=p(UNV)

be the transition map for the charts on the manifold. The transition map for the charts (7 =1(U), ®), (x=1(V), ¥)
is given by
Tod ':p(UNV)xR" = p(UNV)xR" (z,v) = (Yoo (x),n.(v))
which is clearly smooth.
To check that this is a vector bundle of rank n, note that each fibre 7=1(p) for p € M is the vector space
T,(M). Indeed, for each chart (U, ) containing p, #~!(U) is homeomorphic to U x R™. This provides the local
trivialisation.

O

Definition 1.2. Let (E,7) be a smooth vector bundle of rank k over a smooth manifold M. A section is a
continuous map o : M — F such that moo = idy;. A smooth section is a section that is a smooth map (between
manifolds M, E).

If U C M is an open set, then we define E [;y= 7m—1(U). Note that E [ is also a vector bundle of the same
rank as E. A smooth section of F [y is called a smooth section of E over U.

The set of all sections (over F or U) is endowed with the operation of pointwise addition, i.e.:

(01 + 02)(p) = o1(p) + o2(p)

and multiplication by f € C*°(M), i.e.:
(fo)(p) = f(p)o(p)
This makes the set of all smooth sections of E (over E or U) a module over the ring C*°(U).

A local frame for E over U is an ordered k-tuple (o1, ..., o)) where each o; is a smooth section of E over U
such that (o1(p), ..., ox(p)) is a basis for the fibre E, for each p € U. Is it called a global frame if U = M.

Proposition 1.3. A smooth vector bundle is trivial iff it has a global frame.

Example 1.4. (Mobius band) This is perhaps the easiest example of a non-trivial bundle. The Mobius band
E is the quotient space of [0,1] x R given by the equivalence relation (0,y) ~ (1, —y).
We first define the smooth structure on E' by means of a system of charts. Let
1 1
Vi={lz,t)] |z (01)teR} Vo={[,)][z€[0,5)U(5 1]t R}
We have charts
¢1: V1 = (0,1) xR [(z,t)] = (z,t)



2 YASH LODHA

11 . 1 . 1
B2:V = (3,50 xR ball(w ) = )itz e 0,5)  ballla ) = (1 —a, 1) iTw e (3,1]
We would like to show that E is a non-trivial smooth 1-bundle over the circle St, which we view as [0,1]/0 ~ 1
with charts ) )
Ur=(01)  U2=[0,5)U(5,1]/0~1
v :Up = (0,1),[z] >z

11 . 1 . 1
VQ.UQ‘)(*i,i) [:C]—):Ulfl‘G[O,i) [m]%lfxlfxe(i,l]

The natural projection map is
m:E— 8" [(x,5)] — [z] €S!
With this projection map F is a smooth vector bundle over S*.
We would like to show that this is a non-trivial vector bundle. That is, it is not diffeomorphic to the trivial
bundle S' x R. If this was the case, then by the previous proposition, we can find a global smooth frame
o : 8! — E (consisting of a single section, since the bundle is one dimensional). Since the function

n1:¢1oooyf1 :(0,1) = (0,1) xR m(z) = (z,t(x))

for some function t is smooth, hence ¢ is smooth. Note that since o is a global frame, = cannot change sign.
Using the transition maps, we compute

11 11
_ -1 ./_- - __- =
Ny =¢o000v, 2,2)—>( 2,2)><R
restricted to (0,2) U (—1,0) as

ne(z) = (z,t(z)) if « € (0, %) n2(x) = (2, =t(z + 1))
This means that 72(0) = (0,0) and hence o([0]) = 0, which is a contradiction.
Exercise 1.5. Fill in the details in the last paragraph of the proof, by writing down the transition functions
viovy!  ¢pody!

1.1. Vector fields. Let M be a smooth manifold. A wvector field is a section of TM. A smooth vector field
is a smooth section of TM. Given a vector field X : M — TM, we usually write X (p) as X,,. Addition and
multiplication by f € C*°(M) is denoted as

(X+Y)p:Xp+Yp (fX)p:f(p)Xp

Given a smooth chart (U, ¢), we write

i 0
Xp = Z X(p)&bi |;D
1<i<n
for p € U and the functions X? : U — R are the component functions.
Example 1.6. (coordinate vector fields) Given a chart (U, ¢) the vector field X, = a%i for p € U and fixed

i€{0,...,n}.
On T'S! we can define a nowhere vanishing vector field (i.e. the value at each point is non zero), however,
this is impossible for T'S? this is impossible thanks to the Hairy ball theorem.

Now given a smooth vector field X on M, we wish to find a curve whose tangent vector at each point is the
vector field at that point. A smooth curve v : J — M is called an integral curve for X if 4'(t) = X, for each
t € J. In local coordinates (U, ¢), this boils down to solving the system of ODEs

(V")) =X"(v(t)) 1<i<n

For instance, on R™, one has v(t) = (¢,0, ..., 0) as the integral curve of 8%1. More generally, v(t) = (¢,0,...,0)+
y for fixed y € R™ is also an integral curve for the same field. If we specify that v(0) = y for some y, then this
o)

is the unique integral curve of 577 with this property.

Example 1.7. Consider the vector field xQ% on R. We wish to find an integral curve with v(0) = 1. This
involves solving

(1) = () 2(0)=1

Using the separation of variables method, the maximal solution is z(t) = 1% for € (—o0, 1).



This shows that we may not always have a globally defined integral curve over a vector field. So we often
ask for a “local existence”. That is, given a point, is there a integral curve for a vector field starting at that
point? The answer is yes.

Theorem 1.8. Let X be a smooth vector field. Then for each p € M there exists a unique mazimal integral
curve v : J — M starting at p (i.e.y(0) = p) where J C R is an open interval containing 0.

2. SUBMANIFOLDS

Let F: M — N be a smooth map between smooth manifolds. We say that F'is an immersion if
Fo: Ty (M) = Ty (M)
is injective at each point p € M. We say that F' is a submersion if
F* : Tp(M) — TF(p)(M)

is surjective at each point p € M. We say that F' is a smooth embedding if it is an immersion that is a
homeomorphism onto its image.

The rank of F' at a point p € M is the rank of the linear map Fj. If the rank is constant, then we denote
this as rank(F).

Example 2.1. The standard immersion is the map
R" - R™ (2, ..., 2") = (z!,...,2",0,...,0),m > n
The standard submersion is the map
R" - R™ (!, ..., 2™) = (', ..., 2™),m <n

A smooth curve v : J — M is an immersion if and only if 7/(t) # 0 for each t € J. The inclusion S — R"*!is
an immersion, where both manifolds are endowed with the standard smooth structures. Given smooth manifolds
My, ..., My, the projections

Mlx...ka%Mi

are submersions.

Let J = (—%,37). Consider the curve

v:J — R? ~(t) = (sin(2t), cos(t))

This curve is an injective immersion yet it is not an embedding.

Exercise 2.2. Show that the curve in the last example is not an embedding.



