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1. The tangent bundle as a smooth vector bundle

Our goal now will be to show that the tangent bundle is a smooth vector bundle.

Proposition 1.1. Let M be a smooth manifold of dimension n. The tangent bundle TM has a natural topology
and smooth structure, making it a smooth 2n-dimensional bundle with the natural projection map π : TM →M .
This makes it a smooth vector bundle of rank n.

Proof. We shall define the smooth charts for TM . Let (U, φ) be a smooth chart for M . Then we define the map

Φ : π−1(U)→ R2n Φ(vi
∂

∂φi
|p)→ (φ(p), v) v = (viEi)

We define the following basis of the topology: the open sets in this basis are the inverse images of open balls in
R2n under the maps Φ as above. So by construction, each such map Φ is a homeomorphism onto its image. It
is easy to check that this is a basis and that the resulting topology is second countable and Hausdorff.

So for the smooth chart (U, φ) for M we have a smooth chart (π−1(U),Φ) defined as above. Let (V, ψ) be
another smooth chart for M and let (π−1(V ),Ψ) be the corresponding smooth chart for TM . Let

η = ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

be the transition map for the charts on the manifold. The transition map for the charts (π−1(U),Φ), (π−1(V ),Ψ)
is given by

Ψ ◦ Φ−1 : φ(U ∩ V )×Rn → ψ(U ∩ V )×Rn (x, v) 7→ (ψ ◦ φ−1(x), η∗(v))

which is clearly smooth.
To check that this is a vector bundle of rank n, note that each fibre π−1(p) for p ∈ M is the vector space

Tp(M). Indeed, for each chart (U, φ) containing p, π−1(U) is homeomorphic to U ×Rn. This provides the local
trivialisation.

�

Definition 1.2. Let (E, π) be a smooth vector bundle of rank k over a smooth manifold M . A section is a
continuous map σ : M → E such that π◦σ = idM . A smooth section is a section that is a smooth map (between
manifolds M,E).

If U ⊂M is an open set, then we define E �U= π−1(U). Note that E �U is also a vector bundle of the same
rank as E. A smooth section of E �U is called a smooth section of E over U .

The set of all sections (over E or U) is endowed with the operation of pointwise addition, i.e.:

(σ1 + σ2)(p) = σ1(p) + σ2(p)

and multiplication by f ∈ C∞(M), i.e.:

(fσ)(p) = f(p)σ(p)

This makes the set of all smooth sections of E (over E or U) a module over the ring C∞(U).
A local frame for E over U is an ordered k-tuple (σ1, ..., σk) where each σi is a smooth section of E over U

such that (σ1(p), ..., σk(p)) is a basis for the fibre Ep for each p ∈ U . Is it called a global frame if U = M .

Proposition 1.3. A smooth vector bundle is trivial iff it has a global frame.

Example 1.4. (Mobius band) This is perhaps the easiest example of a non-trivial bundle. The Mobius band
E is the quotient space of [0, 1]×R given by the equivalence relation (0, y) ∼ (1,−y).

We first define the smooth structure on E by means of a system of charts. Let

V1 = {[(x, t)] | x ∈ (0, 1), t ∈ R} V2 = {[(x, t)] | x ∈ [0,
1

2
) ∪ (

1

2
, 1], t ∈ R}

We have charts

φ1 : V1 → (0, 1)×R [(x, t)]→ (x, t)

1
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φ2 : V2 → (−1

2
,

1

2
)×R φ2([(x, t)])→ (x, t) if x ∈ [0,

1

2
) φ2([(x, t)] = (1− x,−t) if x ∈ (

1

2
, 1]

We would like to show that E is a non-trivial smooth 1-bundle over the circle S1, which we view as [0, 1]/0 ∼ 1
with charts

U1 = (0, 1) U2 = [0,
1

2
) ∪ (

1

2
, 1]/0 ∼ 1

ν1 : U1 → (0, 1), [x]→ x

ν2 : U2 → (−1

2
,

1

2
) [x]→ x if x ∈ [0,

1

2
) [x]→ 1− x if x ∈ (

1

2
, 1]

The natural projection map is

π : E → S1, [(x, s)]→ [x] ∈ S1

With this projection map E is a smooth vector bundle over S1.
We would like to show that this is a non-trivial vector bundle. That is, it is not diffeomorphic to the trivial

bundle S1 × R. If this was the case, then by the previous proposition, we can find a global smooth frame
σ : S1 → E (consisting of a single section, since the bundle is one dimensional). Since the function

η1 = φ1 ◦ σ ◦ ν−11 : (0, 1)→ (0, 1)×R η1(x) = (x, t(x))

for some function t is smooth, hence t is smooth. Note that since σ is a global frame, x cannot change sign.
Using the transition maps, we compute

η2 = φ2 ◦ σ ◦ ν−12 : (−1

2
,

1

2
)→ (−1

2
,

1

2
)×R

restricted to (0, 12 ) ∪ (− 1
2 , 0) as

η2(x) = (x, t(x)) if x ∈ (0,
1

2
) η2(x) = (x,−t(x+ 1))

This means that η2(0) = (0, 0) and hence σ([0]) = 0, which is a contradiction.

Exercise 1.5. Fill in the details in the last paragraph of the proof, by writing down the transition functions

ν1 ◦ ν−12 φ2 ◦ φ−11

1.1. Vector fields. Let M be a smooth manifold. A vector field is a section of TM . A smooth vector field
is a smooth section of TM . Given a vector field X : M → TM , we usually write X(p) as Xp. Addition and
multiplication by f ∈ C∞(M) is denoted as

(X + Y )p = Xp + Yp (fX)p = f(p)Xp

Given a smooth chart (U, φ), we write

Xp =
∑

1≤i≤n

Xi(p)
∂

∂φi
|p

for p ∈ U and the functions Xi : U → R are the component functions.

Example 1.6. (coordinate vector fields) Given a chart (U, φ) the vector field Xp = ∂
∂φi for p ∈ U and fixed

i ∈ {0, ..., n}.
On TS1 we can define a nowhere vanishing vector field (i.e. the value at each point is non zero), however,

this is impossible for TS2 this is impossible thanks to the Hairy ball theorem.

Now given a smooth vector field X on M , we wish to find a curve whose tangent vector at each point is the
vector field at that point. A smooth curve γ : J →M is called an integral curve for X if γ′(t) = Xγ(t) for each
t ∈ J . In local coordinates (U, φ), this boils down to solving the system of ODEs

(γi)′(t) = Xi(γ(t)) 1 ≤ i ≤ n

For instance, on Rn, one has γ(t) = (t, 0, ..., 0) as the integral curve of ∂
∂x1 . More generally, γ(t) = (t, 0, ..., 0)+

y for fixed y ∈ Rn is also an integral curve for the same field. If we specify that γ(0) = y for some y, then this
is the unique integral curve of ∂

∂x1 with this property.

Example 1.7. Consider the vector field x2 ∂
∂x on R. We wish to find an integral curve with γ(0) = 1. This

involves solving

x′(t) = (x(t))2 x(0) = 1

Using the separation of variables method, the maximal solution is x(t) = 1
1−t for x ∈ (−∞, 1).
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This shows that we may not always have a globally defined integral curve over a vector field. So we often
ask for a “local existence”. That is, given a point, is there a integral curve for a vector field starting at that
point? The answer is yes.

Theorem 1.8. Let X be a smooth vector field. Then for each p ∈ M there exists a unique maximal integral
curve γ : J →M starting at p (i.e.γ(0) = p) where J ⊂ R is an open interval containing 0.

2. Submanifolds

Let F : M → N be a smooth map between smooth manifolds. We say that F is an immersion if

F∗ : Tp(M)→ TF (p)(M)

is injective at each point p ∈M . We say that F is a submersion if

F∗ : Tp(M)→ TF (p)(M)

is surjective at each point p ∈ M . We say that F is a smooth embedding if it is an immersion that is a
homeomorphism onto its image.

The rank of F at a point p ∈ M is the rank of the linear map F∗. If the rank is constant, then we denote
this as rank(F ).

Example 2.1. The standard immersion is the map

Rn → Rm (x1, ..., xn)→ (x1, ..., xn, 0, ..., 0),m > n

The standard submersion is the map

Rn → Rm (x1, ..., xn)→ (x1, ..., xm),m < n

A smooth curve γ : J →M is an immersion if and only if γ′(t) 6= 0 for each t ∈ J . The inclusion Sn → Rn+1 is
an immersion, where both manifolds are endowed with the standard smooth structures. Given smooth manifolds
M1, ...,Mk, the projections

M1 × ...×Mk →Mi

are submersions.
Let J = (−π2 ,

3π
2 ). Consider the curve

γ : J → R2 γ(t) = (sin(2t), cos(t))

This curve is an injective immersion yet it is not an embedding.

Exercise 2.2. Show that the curve in the last example is not an embedding.


