ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 14
Principles of Digital Communications
Solutions to Homework 6
Oct. 26, 2020
Problem 1. Since L is linear, we know that

$$
L(\lambda x)=\lambda L(x)
$$

for any $\lambda \in \mathbb{R}$. Similarly, g is concave so it must satisfy the following by definition.

$$
g\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)
$$

for any $\lambda \in[0,1]$. Combining these two statements, the following steps show that f is concave.

$$
\begin{align*}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) & =g\left(L\left(\lambda x_{1}+(1-\lambda) x_{2}\right)\right) \\
& =g\left(\lambda L\left(x_{1}\right)+(1-\lambda) L\left(x_{2}\right)\right) \tag{1}\\
& \geq \lambda g\left(L\left(x_{1}\right)\right)+(1-\lambda) g\left(L\left(x_{2}\right)\right) \tag{2}\\
& =\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
\end{align*}
$$

where (1) uses the linearity property of L and (2) uses the concavity property of g.

Problem 2.

(a) Let $s(m)=0+1+\cdots+(m-1)=m(m-1) / 2$. Suppose we have a string of length $n=s(m)$. Then, we can certainly parse it into m words of lengths $0,1, \ldots$, ($m-1$), and since these words have different lengths, we are guaranteed to have a distinct parsing. Since a parsing with the maximal number of distinct words will have at least as many words as this particular parsing, we conclude that whenever $n=m(m-1) / 2, c \geq m$ (and for $n>m(m-1) / 2$ we can parse the first $m(m-1) / 2$ letters to m, as we just described, and append the remaining letters to the last word to have a parsing into m distinct words).
(b) An all zero string of length $s(m)$ can be parsed into at most m words: in this case distinct words must have distinct lengths and the bound is met with equality.
(c) Now, given n, we can find m such that $s(m-1) \leq n<s(m)$. A string with n letters can be parsed into $m-1$ distinct words by parsing its initial segment of $s(m-1)$ letters with the above procedure, and concatenating the leftover letters to the last word. Thus, if a string can be parsed into $m-1$ distinct words, then $n<s(m)$, and in particular, $n<s(c+1)=c(c+1) / 2$. From above, it is clear that no sequence will meet the bound with equality.

Problem 3. Observe that $H(Y)-H(Y \mid X)=I(X ; Y)=I(X ; Z)=H(Z)-H(Z \mid X)$.
(a) Consider a channel with binary input alphabet $\mathcal{X}=\{0,1\}$ with X uniformly distributed over \mathcal{X}, output alphabet $\mathcal{Y}=\{0,1,2,3\}$, and probability law

$$
P_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{2}, & \text { if } x=0 \text { and } y=0 \\ \frac{1}{2}, & \text { if } x=0 \text { and } y=1 \\ \frac{1}{2}, & \text { if } x=1 \text { and } y=2 \\ \frac{1}{2}, & \text { if } x=1 \text { and } y=3 \\ 0, & \text { otherwise. }\end{cases}
$$

It is easy to verify $H(Y \mid X)=1$. Since Y takes any value in \mathcal{Y} with equal probability, its entropy is $H(Y)=2$. Therefore $I(X ; Y)=1$. Define the processor output to be in alphabet \mathcal{Z} and construct a deterministic processor $g: y \mapsto z=g(y)$ such that,

$$
\begin{aligned}
g: \quad \mathcal{Y} & \rightarrow \mathcal{Z}=\{0,1\} \\
0 & \mapsto 0 \\
1 & \mapsto 0 \\
2 & \mapsto 1 \\
3 & \mapsto 1 .
\end{aligned}
$$

Clearly, $H(Z \mid X)=0$ and $H(Z)=1$. Therefore $I(X ; Z)=1$. We conclude that $I(X ; Z)=I(X ; Y)$ and $H(Z)<H(Y)$.
(b) Consider an error-free channel with binary input alphabet $\mathcal{X}=\{0,1\}$ with X uniformly distributed over \mathcal{X}, binary output alphabet $\mathcal{Y}=\{0,1\}$, and probability law

$$
P_{Y \mid X}(y \mid x)= \begin{cases}1, & \text { if } x=y \\ 0, & \text { otherwise }\end{cases}
$$

Choose now $\mathcal{Z}=\{0,1,2,3\}$ an construct a probabilistic processor G such that

$$
\begin{aligned}
& G: \mathcal{Y} \rightarrow \mathcal{Z} \\
& 0 \\
& \mapsto 0 \text { with probability } \frac{1}{2} \text { or } 1 \text { with probability } \frac{1}{2} \\
& 1 \mapsto 2 \text { with probability } \frac{1}{2} \text { or } 3 \text { with probability } \frac{1}{2} .
\end{aligned}
$$

Clearly, $I(X ; Y)=1=I(X ; Z)$ and $H(Y)=1<2=H(Z)$.

Problem 4.

(a)

$$
\operatorname{Pr}(U=u \mid V=?)=\frac{\operatorname{Pr}(V=? \mid U=u) p_{U}(u)}{\operatorname{Pr}(V=?)}=\frac{p_{U}(u) p}{p}=p_{U}(u)
$$

(b)

$$
\begin{aligned}
I(U ; V) & =H(U)-H(U \mid V) \\
& =H(U)-\operatorname{Pr}(V=?) H(U \mid V=?)-\operatorname{Pr}(V \neq ?) H(U \mid V \neq ?) \\
& \stackrel{(a)}{=} H(U)-p \sum_{u=1}^{K} \operatorname{Pr}(U=u \mid V=?) \log \frac{1}{\operatorname{Pr}(U=u \mid V=?)} \\
& \stackrel{(b)}{=} H(U)-p \sum_{u=1}^{K} p_{U}(u) \log \frac{1}{p_{U}(u)}=H(U)-p H(U)=(1-p) H(U),
\end{aligned}
$$

where (a) is obtained by noticing that if $V \neq$? then $V=U$ and $H(U \mid V \neq ?)=0$ and (b) is obtained since $\operatorname{Pr}(U=u \mid V=?)=p_{U}(u)$.
(c) Let C_{p} be the capacity of this channel. Then,

$$
C_{p}=\max _{p_{U}} I(U, V)=\max _{p_{U}}(1-p) H(U)=(1-p) \max _{p_{U}} H(U)=(1-p) \log K,
$$

with the maximum achieved when U is uniformly distributed over $\{1, \cdots, K\}$.

Problem 5.

(a) Since the channel is symmetric, the input distribution that maximizes the mutual information is the uniform one. Therefore, $C=1+\epsilon \log _{2}(\epsilon)+(1-\epsilon) \log _{2}(\epsilon)$ which is equal to 0 when $\epsilon=\frac{1}{2}$.
(b) We have
$-I\left(X^{n} ; Y^{n}\right)=I\left(X_{2}^{n} ; Y^{n-1}\right)+I\left(X_{2}^{n} ; Y_{n} \mid Y^{n-1}\right)+I\left(X_{1} ; Y^{n} \mid X_{2}^{n}\right)$.
$-X_{2}^{n}=Y^{n-1}$ and Y_{1}, \ldots, Y_{n} are i.i.d. and uniform in $\{0,1\}$, so $I\left(X_{2}^{n} ; Y^{n-1}\right)=$ $H\left(Y^{n-1}\right)=n-1$.

- Y_{n} is independent of $\left(X_{2}^{n}, Y^{n-1}\right)$, so $I\left(X_{2}^{n} ; Y_{n} \mid Y^{n-1}\right)=0$.
- X_{1} is independent of $\left(Y^{n}, X_{2}^{n}\right)$, so $I\left(X_{1} ; Y^{n} \mid X_{2}^{n}\right)=0$.

Therefore, $I\left(X^{n} ; Y^{n}\right)=n-1$.
(c) W is independent of Y^{n}, so $I\left(W ; Y^{n}\right)=0=n C$.

