EPFL - Automne 2020	Y. Lodha, G. Buro
Smooth Manifolds	Exercices
Série 7	27 octobre 2020

- **7.1**. Soit E un fibré vectoriel lisse sur M. Montrer que la projection $\pi: E \to M$ est une submersion surjective lisse.
- **7.2**. Soit $E \to M$ un fibré vectoriel lisse.
 - Montrer que si $\sigma, \tau \in \Gamma(E)$ et $f, g \in \mathcal{C}^{\infty}(M)$, alors $f\sigma + g\tau \in \Gamma(E)$.
 - Montrer que $\Gamma(E)$ est un module sur l'anneau $\mathcal{C}^{\infty}(M)$.
- **7.3**. (Sommes de Whitney)

Soit M une variété lisse et $E' \to M$, $E'' \to M$ deux fibrés vectoriels lisses de rang k' et k'' respectivement. Construire un nouveau fibré sur M à partir de E' et E'' qu'on appellera la somme de Whitney, donc les fibres au dessus de $p \in M$ seront les sommes directes de fibres $E'_p \oplus E''_p$.

7.4. Faire les exercices 1.5 et 2.2 du polycopié.