Climate Economics for Engineers

ENV-724 (Thalmann/Vielle/Vöhringer), Session 6, 28 Oct. 2020

Dr. Frank Vöhringer ENAC IA LEURE frank.voehringer@epfl.ch

Climate Economics

Overview

23.09	Economic activity as a source of greenhouse gases, climate scenarios	Frank Vöhringer
30.09	Impacts of climate change: valuation and uncertainty	Philippe Thalmann
07.10	Impacts of climate change: net costs (aggregation, discounting)	Frank Vöhringer
14.10	Adaptation to climate change	Marc Vielle
21.10	Mitigation: abatement measures, cost curves, innovation	Frank Vöhringer
28.10	Cooperation: mitigation as a public good, international climate policy	Frank Vöhringer
04.11	Instruments for climate policy	Philippe Thalmann
11.11	Swiss climate policy	Philippe Thalmann
18.11	Solar radiation management: economics and governance	Frank Vöhringer
02.12	Final exam	all

Dr. Frank Vöhringer ENAC IA LEURE frank.voehringer@epfl.ch

Climate Economics

Overview for today

- abatement measures
- the cost of mitigation
- mitigation game
- international climate policy
 - negotiations and commitments under the UNFCCC
 - mitigation as a public good
 - equity and fairness
- economics of innovation

4 major levers for abatement in industry

Country: Germany Source: Hübner 2020

Global primary energy supply

Net zero energy buildings

Carbon capture and storage (CCS)

- capture of CO₂ from large industrial emissions sources
 - power plants, cement plants, ...
- storage of the CO₂ in deep underground geological formations
 - exploited oil and natural gas reservoirs
 - saline, basalt and other formations
 - requirements
 - safety (CO₂ is invisible, odorless and fatal)
 - social and environmental sustainability
 - affordability (e.g.: transport is expensive)
 - acceptability

Theoretical CO₂ storage potentials in CH

Source: geologieportal.ch, based on the CARMA project

Buying time for fossil fuel based industries?

- theoretical CCS potentials are large, but how large will effective potentials be?
 - socially acceptable and safe
 - economically viable
 - no incentives without high CO₂ prices
 - timeline (so far only demonstration projects)
- negative emissions required
 - CCS, but with bioenergy instead of fossil fuels (BECCS)

Bioenergy with CCS (BECCS)

- negative emissions
 - growing biomass sustainably captures CO₂ and stores it as carbon in both biomass and soil
 - using the biomass for electricity generation releases most of the carbon, but this doesn't increase atmospheric CO₂ concentrations when the emitted CO₂ is captured and stored
- sustainable biomass production
 - avoid prior deforestation
 - avoid local social conflict
 - competing land uses, especially food production (which may lead to deforestation elsewhere)
 - marine biomass (algae) as an alternative? (MBECCS/ABECCS)
 - incentives and instutions needed

Land use, land use change, and forestry

- high potentials for storing carbon
 - in biomass aboveground and belowground and in soil
 - especially in tropical forests (fast growth, lower cost)
 - avoided deforestation/degradation (sustainable management?)
 - afforestation and reforestation
 - forest plantations

issues

- permanence
 - forest fires, land use change
 - plantation harvesting (wood as building material or furniture?)
- institutions and incentives
- neocolonialism?
- sustainability

Forests and sustainability

benefits

- timber and other products
- recreation and tourism
- environmental services
 - biodiversity, clean water and air, climate regulation
 - avoided erosion
 - carbon storage (dominant in monetizations)

some issues

- local development priorities and long-term commitments
- low profitability and attractive economic alternatives
- land conflict
 - projects with small farmers exist, but not at large scale

Methane abatement measures (examples)

energy

- flaring of landfill gas
- electricity generation from landfill gas
- utilization of gas from coal mines
- gas flaring or utilization in oil extraction

agriculture

- rice management
- improved feeding practices
- anaerobic digestion

Swiss CO₂ emissions by source (2015)

Source: Baier et al. 2018 with FOEN data

Levers for abatement in consumption

Top options for reducing your carbon footprint

Average reduction per person per year in tonnes of CO2 equivalent

Live car-free 2.04

Refurbishment /renovation 0.895

Battery electric car 1.95

Vegan diet 0.8

One less long-haul flight per year 1.68

Heat pump 0.795

Renewable energy **1.6**

Improved cooking equipment 0.65

Public transport 0.98

Renewable-based heating **0.64**

And ...

buy less / reuse / repair

travel less

stream less

buy regional products (in most cases)

reduce packaging

avoid very emissions intensive products (beef)

what else?

Agricultural products

Figure TS.30 | GHG emissions intensities of selected major AFOLU commodities for decades 1960s—2000s. (1) Cattle meat, defined as GHG (enteric fermentation + manure management of cattle, dairy and non-dairy)/meat produced; (2) pig meat, defined as GHG (enteric fermentation + manure management of swine, market and breeding)/meat produced; (3) chicken meat, defined as GHG (manure management of chickens)/meat produced; (4) milk, defined as GHG (enteric fermentation + manure management of cattle, dairy)/milk produced; (5) eggs, defined as GHG (manure management of chickens, layers)/egg produced; (6) rice, defined as GHG (rice cultivation)/rice produced; (7) cereals, defined as GHG (synthetic fertilizers)/cereals produced; (8) wood, defined as GHG (carbon loss from harvest)/roundwood produced. [Figure 11.15]

Source: IPCC 5AR TS WG3

GHG emissions abatement by sector

Direct Sectoral CO₂ and Non-CO₂ GHG Emissions in Baseline and Mitigation Scenarios with and without CCS

Source: IPCC

Abatement measures

Global GHG abatement cost curve beyond business-as-usual - 2030

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Cost Curve v2.0

Source: McKinsey 2013

Carbon prices and consumption losses

Source: IPCC

Economic growth and abatement costs

Source: OECD 2008

Cost of mitigation

	Consumption losses in cost-effective scenarios ¹					Increase in total discounted mitigation costs in scenarios with limited availability of technologies				
	[% reduction in consumption relative to baseline]			[percentage point reduction in annualized consumption growth rate]			[% increase in total discounted mitigation costs (2015–2100) relative to default technology assumptions]			
Concentration in 2100 [ppm CO₂eq]	2030	2050	2100	2010 -2030	2010 -2050	2010 -2100	No CCS	Nuclear phase out	Limited Solar/ Wind	Limited . Bioenergy
450 (430–480)	1.7 (1.0–3.7) [N: 14]	3.4 (2.1–6.2)	4.8 (2.9–11.4)	0.09 (0.06–0.2)	0.09 (0.06–0.17)	0.06 (0.04–0.14)	138 (29–297) [N: 4]	7 (4–18) [N: 8]	6 (2–29) [N: 8]	64 (44–78) [N: 8]
500 (480–530)	1.7 (0.6–2.1) [N: 32]	2.7 (1.5–4.2)	4.7 (2.4–10.6)	0.09 (0.03–0.12)	0.07 (0.04–0.12)	0.06 (0.03–0.13)	N/A	N/A	N/A	N/A
550 (530–580)	0.6 (0.2–1.3) [N: 46]	1.7 (1.2–3.3)	3.8 (1.2–7.3)	0.03 (0.01–0.08)	0.05 (0.03–0.08)	0.04 (0.01–0.09)	39 (18–78) [N: 11]	13 (2–23) [N: 10]	8 (5–15) [N: 10]	18 (4–66) [N: 12]
580–650	0.3 (0–0.9) [N: 16]	1.3 (0.5–2.0)	2.3 (1.2–4.4)	0.02 (0–0.04)	0.03 (0.01–0.05)	0.03 (0.01–0.05)	N/A	N/A	N/A	N/A

Source: IPCC 5AR TS WG3

Dr. Frank Vöhringer ENAC IA LEURE frank.voehringer@epfl.ch

Carbon prices for 1.5°C

Source: IPCC SR1.5

Fossil fuel subsidies (in % of GDP & bio. US\$, 2013)

Source: OECD/IEA 2014

Ancillary benefit: reduced air pollution

IPCC AR5 Scenario Ensemble

Impact of Climate Policy on Air Pollutant Emissions (Global, 2005-2050)

Dr. Frank Vöhringer ENAC IA LEURE frank.voehringer@epfl.ch

Determinants of abatement cost estimates

- baseline projections
 - population
 - GDP
 - energy resources and prices
 - emissions
- technical potential
 - availability and potentials of measures
 - substitution possibilities
 - rate of technological change
- discount rate
- ancillary benefits of GHG abatement
- climate policy regime
 - stringency & flexibility
 - policy instruments and revenue recycling

International Climate Policy

2nd round NDCs are due in 2020

- Norway increased its target from 50% to 55% relative to 1990
 - expecting the same target eventually to be announced by the EU
- Chile, who had an unsubstantial 1st NDC, submitted an ambitious 2nd NDC
- other new submissions are disappointing
 - Russia, Japan, Singapore
- only few submissions so far

International Climate Policy

Other recent target announcements

- Switzerland has increased its share of domestic abatement for the 2030 target to 75% (revision of the CO₂ law)
 - in national legislation, not yet as an international commitment
 - net zero in 2050 also announced in UNFCCC communication
- Numerous other countries, regions, cities and firms have announced net zero emissions targets for 2050
 - including China, EU, Canada, New Zealand, Chile, Costa Rica
 - Sweden has announced a carbon neutrality target for 2045
 - most of these targets are not legally binding in international law

