




•
•
•
•

•



•
•
•

•
•

•
•



•
•

•
•



•
•

•
•

•
•



•

•

•



• http://www.cs.columbia.edu/~cdall/candidacy/pdf/Uhlig2005.pdf

•
•

http://www.cs.columbia.edu/~cdall/candidacy/pdf/Uhlig2005.pdf


•
•

•
•



Xen and the Art of 
Virtualization

POCS’20 Recitation
Mark Sutherland



Motivation for Xen
● Full virtualization of un-modified OS requires a virtualizable architecture

○ Commodity x86 architectures are not P&G virtualizable (why?)

● In many scenarios, exposing a subset of physical resources is desirable
○ E.g., disk block locations for faster disk scheduling, network Tx/Rx rings for direct I/O
○ Where have we seen this argument before?

● Which of the P&G properties does Xen’s choices directly change?



Full/Para-virtualized Machine Abstractions

Full Virtualization Paravirtualized

CPU
- Trap-and-emulate
- Syscalls emulated before passed to 

the guest OS

- Guest OS runs in de-privileged mode
- Interrupts/exceptions go through VMM
- Syscalls can be short-cut into guest OS

Memory
- Guest has the illusion of the entire 

contiguous physical memory
- VMM manages all relocations

- Guest allocates/manages its own pages
- Page table updates go through VMM



X86 Address Translation Review
● Protected mode uses both segmentation and paging
● Paging from linear to physical address is invisible



Virtualizing Paging
● Recall the set of privileged state: {cr3, PTEs themselves}

● What’s a naive first idea?
○ Trap on every PTE access, redirect it to the correct place in real hardware memory

● What’s the problem with this idea?
○ Performance overhead! An emulated PTE access can cost 2000 cycles [Bugnion, TOCS’12]



Virtualizing Paging - II
● What can we do about this?

○ Hint: where do instructions modify the PTEs so control can be vectored to the VMM?

● This approach is called “shadow page tables”



Paravirtualization Abstraction
● What changes to the VM abstraction could allow the guest OSes themselves 

to modify their page tables?

● How would this remove the need for “shadow” page tables?



Modern Developments: Extended Page Tables
● Almost all CPUs now have a feature called EPT
● EPT works by defining a “nested page walk” for each level of the guest PT



I/O Abstraction Comparison
Full Virtualization Paravirtualized

I/O
- Identical interfaces are re-exposed to 

all guests
- All interactions emulated by VMM

- Network/disk abstractions are 
completely modified (e.g., VBD, VIF)

- Replace emulation with hypercall

● Can you see a potential issue with even the Xen approach?
○ Hint: think back to week 2



Modern Developments: IOV
● In Xen’s approach, how many layers are there in the I/O procedure?

○ Device → HW-visible I/O ring → Xen I/O ring → Guest → User

● Do you see a performance problem here?

● Today’s devices support native I/O Virtualization (IOV)
○ Multiple HW-visible rings, interrupt descriptors, etc…
○ Device → HW-visible I/O ring → Guest → User
○ Software also exists to remove the guest OS from that path



Modern Developments: VT-d
● Fundamental job of I/O: bring data blocks in and out of memory (DMA)
● How does this interact with paging?

○ Device → HW-visible I/O ring → Guest → User

● Do you see any problems here related to isolation?
○ Hint: think about who puts addresses onto the HW-visible rings


