Formal requirements for
virtualizable third
generation architectures

Lei Yan
POCS 20

Theorem 1

For any conventional 3rd generation computer, a virtual machine
monitor may be constructed if the set of sensitive instructions for that
computer is a subset of the set of privileged instructions.

Subject

Hardware model:
* Mode (User/Supervisor)
* Virtual memory (base and bound)
* Traps
* Still the essence of modern architectures

States:
e S=(E, M, P, R)

Property

A VMM can be constructed that meets the following requirements:
* Equivalence

® Running unmodified OS

® OS has noidea if it runs on real or virtual machine
e Safety

® Resource control
* Efficiency

® Direct execution

Property

VMM construction: trap and emulate architecture
* What (VMM/guest OS/guest app) runs in which mode (user/supervisor)?
* What happens for privileged instruction?
® run by guest 0OS?

¢ attempt by guest app (e.g., syscall)?

Precondition

The set of sensitive instructions for that computer is a subset of the
set of privileged instructions

* Privileged instructions
® Instruction | is privileged if it traps in user mode but does not trap in supervisor mode
* Sensitive instructions

® Control sensitive: instruction does not trap and changes the amount of resources or the
processor mode (M and R)

® Behavior sensitive: instruction behaves differently depending on M and R

* |Innocuous

Precondition

What if control sensitive instructions do not trap?

* Breaks safety

What if behavior sensitive instructions do not trap?

* Breaks equivalence

What about innocuous?

* Breaks nothing

Modern architectures (e.g., x86) is non-virtualizable, how does
existing techniques (hard-/software) workaround this?

i VT'X (httD://WWW.cs.cqumbia.edu/~cda|I/candidacv/odf/Uhqu2005.Ddf)

* Binary translation

* Paravirtualization

http://www.cs.columbia.edu/~cdall/candidacy/pdf/Uhlig2005.pdf

s it always beneficial to pursue full-virtualization, i.e., equivalence?
* VMM cannot take advantage of high level information in VM:
® Cannot deschedule a core of VM that waits for lock
* VMM provides abstraction over physical resources

® Recall exokernel

Xen and the Art of
Virtualization

Motivation for Xen

e Full virtualization of un-modified OS requires a virtualizable architecture
o Commodity x86 architectures are not P&G virtualizable (why?)

e |n many scenarios, exposing a subset of physical resources is desirable
o E.g., disk block locations for faster disk scheduling, network Tx/Rx rings for direct 1/0
o Where have we seen this argument before?

e Which of the P&G properties does Xen’s choices directly change?

Full/Para-virtualized Machine Abstractions

Full Virtualization

Paravirtualized

CPU

Trap-and-emulate
Syscalls emulated before passed to
the guest OS

Guest OS runs in de-privileged mode
Interrupts/exceptions go through VMM
Syscalls can be short-cut into guest OS

Memory

Guest has the illusion of the entire
contiguous physical memory
VMM manages all relocations

Guest allocates/manages its own pages
Page table updates go through VMM

X86 Address Translation Review

e Protected mode uses both segmentation and paging
e Paging from linear to physical address is invisible

%ds:Effective Address

CEU :' """""""""""" Virtual Address
sel type base limit DPL flags 1

mov idx —> %ds e
$ds [Gox =24 limit
$ss §
tes ;- > Linear Address

%gs = =
hidden | I |
<

{ o | base |

{ gatr | Page :-_ - — ‘

Table | —

Segment . .
Descriptor I; I* --------------- Physical Address

Table | T T T T

Virtualizing Paging

e Recall the set of privileged state: {cr3, PTEs themselves}

e What's a naive first idea?
o Trap on every PTE access, redirect it to the correct place in real hardware memory

e \What's the problem with this idea?

o Performance overhead! An emulated PTE access can cost 2000 cycles [Bugnion, TOCS'12]

Virtualizing Paging - |l

e \What can we do about this?

o Hint: where do instructions modify the PTEs so control can be vectored to the VMM?
e This approach is called “shadow page tables”

PDE pages o PTE pages
: I ‘ VM
,‘t"‘? \ / v “‘.‘
—— ;'f [P VMM

T VMM area

Paravirtualization Abstraction

e \What changes to the VM abstraction could allow the guest OSes themselves
to modify their page tables?

e How would this remove the need for “shadow” page tables?

Modern Developments: Extended Page Tables

e Almost all CPUs now have a feature called EPT
e EPT works by defining a “nested page walk” for each level of the guest PT

ORNO
Y Y Y Y T
.)0 (o0 (Do) o
‘ ‘ dx 4 | idx 3 ‘ idx 2 dx 1 ‘ offset

I/O Abstraction Comparison

Full Virtualization Paravirtualized
- ldentical interfaces are re-exposed to - Network/disk abstractions are
I/O all guests completely modified (e.g., VBD, VIF)
- All interactions emulated by VMM - Replace emulation with hypercall

e Can you see a potential issue with even the Xen approach?
o Hint: think back to week 2

Modern Developments: IOV

e In Xen’s approach, how many layers are there in the I/O procedure?
o Device — HW-visible I/O ring — Xen /O ring — Guest — User

e Do you see a performance problem here?

e Today’s devices support native I/O Virtualization (I0OV)
o Multiple HW-visible rings, interrupt descriptors, etc...
o Device —» HW-visible I/O ring — Guest — User
o Software also exists to remove the guest OS from that path

Modern Developments: VT-d

e Fundamental job of I/O: bring data blocks in and out of memory (DMA)

e How does this interact with paging?
o Device —» HW-visible I/O ring — Guest — User

e Do you see any problems here related to isolation?
o Hint: think about who puts addresses onto the HW-visible rings

10000k
in- Device-1
Domain-A I R
Assigned to
, Domains Aand B
Domain-B /

Domain-C -
00h VT-d DIIAA remapping hardware
Physical Memory

