POCS Recitation: Twizzler

Rishabh Iyer 22-10-20

Background: DRAM vs SSDs

- o Access latencies?
- o What is the granularity of access?
- o How do we name objects in each?
- o How is an access to each performed?

Enter Non-Volatile Memory

- o Access latency?
- o What is the granularity of access?
- O How do we name objects in each?
- O How is an access to each performed?

Strawman I: OS for super fast SSDs

- o Access latencies: 2us
- o Granularity of access: Block addressable
- o How do we name objects in each?
- o How is an access to each performed?

The Twizzler OS in an NVM world

- o Access latencies: ~500ns to 1.5us
- o Granularity of access: Byte addressable
- o How do we name objects in each?
- o How is an access to each performed?

Twizzler Architecture

- o Most functionality in libOS (libtwz) to avoid kernel calls
- o Optimise system for tomorrow's software. Provide compatibility for today's software

Persistent Pointers

- o Why are they needed?
 - o How do I share a linked-list across machines?
- o How does Twizzler implement persistent pointers?

Foreign Object Table

- o Why add a level of indirection?
- o How are pointers translated?

Summary

- o Today's storage is block-addressable and slow
- o So we're using the POSIX standard and are happy with an in-kernel FS.
- o Twizzler: first OS that treats persistent objects as first-class citizens.
 - oThis requires the design and implementation of persistent pointers