
Review of Lampson’s Hints
Sec. 2

POCS’2020 Recitation
Mark Sutherland



Roadmap for Today
1. Exercise in Writing a Specification [40 min]
2. Critiquing our Specs [15 min]
3. Break [5m]
4. Modules and Layering [20 min]
5. Classes and Objects [20 min]



2.1 - Have a Specification
Key points of Lampson’s idea of a specification:

● Specifies what, not how
● Decouples the clients of a system, from the implementation of a system
● The code itself is a refinement of the spec



2.1 - Have a Specification
What comprises the spec:

● Externally-visible state of the system
● Actions taken by clients, their effects on the state

Difference between the state and an interface, in the example of an FS?

● State includes files, and directories
● An interface can include read/write/open/delete



Exercise in Specification
In groups, sketch a spec for Lampson’s Global Name Service

● Start with the client interface, do not consider the administrators
● Do the state first, then the actions: enumerate, get/set

Key things to remember:

● Be as clean and minimalistic as you can
● Think about what, not how





Modules, Components, and Layers in RON
Executive summary:

● Design of distributed IP routing means that fault recovery is slow
● Smaller number of nodes can proactively monitor paths and recover
● Application-level overlay network where nodes route packets co-operatively



Lampson says: “A really successful interface is like an hourglass: the spec is the 
narrow neck, with many clients above and many codes below; it can live for 
decades.”

Does RON’s design contradict what he says here?

● RON graciously preserves the beautiful interface of IP, as all its traffic still 
passes through those layers which are blissfully unaware

Modules, Components, and Layers in RON



Modules, Components, and Layers in RON
What techniques does RON itself use for modularity?

● Separating forwarding from routing
● The routers themselves are constructed with many different modules

How is RON an “Open system”?

● Routing policies can be arbitrarily powerful, using BPF-like matching
● Reflect - do such procedure arguments complicate the spec?



The Cost of Layers
Lampson says: “Layers are good for decoupling, but they are not free. Unless 
you’re very careful, there’s a significant cost for each level of abstraction. Usually 
this cost is worth paying.... There are two ways to reduce it: make it cheaper to go 
from one layer to another, or bypass some layers (making the system a lot more 
complicated and hard to maintain).”

Where have we seen this before?

● Exokernel arguments about performance and raw device access
● P&G paper: virtualization through emulation is costly
● Xen: the hardware-MMU layer



Reducing the Cost
What solutions are proposed to those problems?

● Exokernel: reduce cost of abstractions by implementing them in user mode, 
redesign kernel primitives

● P&G virtualization criteria: direct execution
● Xen memory de-virtualization: only involve myself on the path of updates





Classes and Objects Recap
Summarize the interaction between programs and specs:

● Spec and code are attached to data (an object)
● The classpec is providing abstraction, the instance provides the refinement
● Overloading breaks the classpec



Classes and Objects
In which paper(s) have we seen the idea of a classpec?

● “On the Duality of OS Structures”
● Compares a message-oriented and procedure-oriented system

What is the common module that both system models needed?

● Resource manager



Classes and Objects
Abstract state required for the resource manager classpec:

● Input and output ports
● Resource name
● Should there be more here?

Actions:

● Enter & request resource
● Exit & release



Implementation and Refinement
What do we use for input/output in message-oriented systems?

● Explicit messages (i.e., RPCs that have a payload)

How about for granting and revoking resources?

● Implicit: queues serve as the refinement of requests for the resource
● When a reply is generated, the resource is by definition free



Implementation and Refinement - II
What do we use for input/output in procedure-oriented systems?

● Function calls, most probably exposed through a loader

How about for granting and revoking resources?

● Shared-memory synchronization
● Requesting a resource explicitly “waits”, freeing it does “wake up”


