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Problem 1. A code c : U → {0, 1}∗ is called prefix-complement-free if for every u ∈ U ,
neither c(u) nor the complement of c(u) is a prefix of any other code word. (The complement
of a binary string is obtained by replacing 0’s with 1’s and vice versa; e.g., complement of
01001 is 10110.)

a) Show that if a code c : U → {0, 1}∗ is prefix-complement-free, then∑
u∈U

2− length(c(u)) ≤ 1

2
.

Suppose c : U → {0, 1}∗ is a prefix-complement-free code. Consider a code c′ :
U × {0, 1} → {0, 1}∗ with twice as many codewords, whose codewords c′((u, 0))
is equal to c(u) and c′((u, 1)) is the complement of c(u). Then since c is prefix-
complement-free, c′ is prefix-free, so

1 ≥
∑

b∈{0,1}

∑
u∈U

2− length(c′((u,b))) = 2
∑
u∈U

2− length(c(u)),

which implies the required inequality.

b) Show that if ` : U → {1, 2, . . . } fulfills∑
u∈U

2−`(u) ≤ 1

2

then there exists a prefix-complement-free code c : U → {0, 1}∗ with length(c(u)) =
`(u) for all u ∈ U .

As
∑

u∈U 2−(`(u)−1) ≤ 1, we can build a prefix-free code c′ such that length(c′(u)) =
`(u) − 1. Now define a code c(u) = 0||c′(u), each codeword in this code does not
contains its complement and it inherits the property of prefix-free-ness from c′.

c) Is there an operation t : {0, 1}∗ → {0, 1}∗ with length(t(s)) = length(s) + 1 such that
whenever c : U → {0, 1}∗ is prefix-free, then c̃ : U → {0, 1}∗ defined by c̃(u) = t(c(u))
is prefix-complement-free?

We can use the same extension method as in 1.b., namely that t(c(u)) = 0||c(u).

We call a code c a fix-complement-free code if for every u ∈ U , neither c(u) nor the
complement of c(u) is a prefix or a suffix of any other code word. Consider these following
propositions.

Proposition A. If ` : U → {1, 2, . . . } fulfills∑
u∈U

2−`(u) ≤ κ

then there exists a fix-complement-free code c : U → {0, 1}∗ with length(c(u)) = `(u) for
all u ∈ U .

Proposition B. If a code c : U → {0, 1}∗ is fix-complement-free, then∑
u∈U

2− length(c(u)) ≤ κ.
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d) Let κ1 be the largest value of κ such that proposition A is true. Let κ2 be the largest
value of κ such that proposition B is true. Show that κ1 < 1/2 and κ2 ≥ 1/2.

[Hint: Give a counterexample to proposition A if κ1 ≥ 1/2, and a counterexample to
proposition B if κ2 < 1/2.]

With U = {1, 2, 3} and `(1) = 2, `(2) = l(3) = 3, we have
∑

u∈U 2−`(u) = 1/2. We
claim that no choice of codewords c(1), c(2) and c(3) of these lengths can be fix-
complement free. To see this note that there are only four choices of c(1) : 00, 10, 01,
and 11. We consider these four cases in turn. If c(1) = 00, then, by the fix-
complement-free condition, c(2) and c(3) cannot be 000, 001, 110, 111, 100, 011. Thus
c(2) and c(3) have to be either 010 or 101. But these are complements of each other
and thus are not valid choices for c(2) and c(3). The other possibilities of c(1) also
lead to contradiction in exactly the same way. We thus see that κ1 < 1/2.

Furthermore, note that with cU = 1, 2 and c(1) = 00, c(2) = 01 the code c is fix-
complement free and has

∑
u∈U 2− length(c(u)) = 1/2. Thus κ2 ≥ 1/2.

e) Find a value of κ for which you can prove proposition A, and give this proof.

We give a proof of Proposition A for κ = 1/4. Label the elements of U as U =
u1, . . . , uK so that `(u1) ≤ · · · ≤ `(uK). Now consider the algorithm:

(a) Mark all binary sequences {0, 1}∗ as being ‘available’.

(b) For i = 1, . . . , K

A1 Pick c(ui) as any available binary sequence of length `(ui).

A2 Mark all sequences that have c(ui) or the complement of c(ui) as either its
suffix or its prefix as ‘not available’.

It is clear that if the algorithm reaches step A2 it has constructed a code that is
fix-complement free. It is also clear that the only way the algorithm may fail is in
step A1, i.e., if all sequence of length `(ui) are marked unavailable so there is no way
to pick c(ui). But the number of binary sequences of length ` that are available when
step A1 is executed is

2` −
i−1∑
j=1

4.2`−`(uj) = 2`

[
1− 4

i−1∑
j=1

2−l(uj)

]

since we start with all 2` sequences of length ` available and in each previous step j
we eliminate 2.2`−`(uj) sequences that have c(uj) as its prefix or suffix; and 2`−`(uj)

sequences that have the complement of c(uj) as its prefix or suffix.

Since
∑i−1

j=1 2−l(uj) <
∑K

j=1 2−l(uj), the condition
∑K

j=1 2−l(uj) ≤ 1/4 guarantees that
the number binary sequences available at step A1 is positive, so the algorithm cannot
fail at step A1.
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Problem 2. Suppose k is a positive integer and T is a random variable that is uniformly
distributed on the set {0/k, 1/k, . . . , k/k}.

Further suppose X1, . . . , Xn are binary random variables with

PXn|T (xn | t) =
n∏

i=1

PXi|T (xi | t),

and
PXi|T (1 | t) = t, PXi|T (0 | t) = 1− t.

In other words, conditional on T = t, the random variablesX1, . . . , Xn are i.i.d. Bernoulli(t).
Consider the following estimator T̂ of T from the observation Xn: first compute X̄ =

1
n

∑n
i=1Xi, then round X̄ to the closest multiple of 1/k.

a) Show that for a > 0, Pr
(∣∣X̄ − t∣∣ ≥ a |T = t

)
≤ 1

4na2
. [Hint : Use Chebyshev’s

inequality.]

Conditional on T = t,Xi are i.i.d. Bernoulli(t), in particular

E[Xi|T = t] = E[X2
i |T = t] = t,

so conditional on T = t,Xi are i.i.d. random variable with expectation t and variance
t − t2 = t(1 − t) ≤ 1/4. Consequently, conditional on T = t, X̄ has expectation t
and variance ≤ 1/4n. Using Chebyshev’s inequality “for any random variable X and
any a > 0,Pr(|X − E[X]| ≥ a) ≤ V ar(X)/a2),” we immediately get the required
inequality.

b) Show that H (T |Xn) ≤ 1 + pn,k log2 k, where pn,k = k2/n.

Using 2.a), and choosing a = 1/(2k), we observe that Pr(X̂ 6= X) ≤ pn,k = k2/n.

Now, with p = Pr(X̂ 6= X),

H(T |Xn) = H(T |Xn, T̂ ) [since T̂ is a function of Xn]

≤ H(T |T̂ ) [conditioning reduced entropy]

≤ h2(p) + p log2 k [Fano’s inequality.]

≤ 1 + p log2 k [h2(p) ≤ 1]

≤ 1 + pn,k log2 k

c) Show that whenever n ≥ 2k2, I(T ;Xn) ≥ 1
2

log2 k − 1.

If n ≥ 2k2, pn,k <= 1/2, and thus

I(T ;Xn) = H(T )−H(T |Xn)

= log2(k + 1)−H(T |Xn)

≥ log2(k + 1)− 1

2
log2(k)− 1 [Use 2.b.]

≥ 1

2
log2 k − 1

Let V and U be discrete sets and suppose for each v in V we are given a probability
distribution on U , denoted by PU |V=v. Let PV be a probability distribution on V . Together
with the PU |V=v above, this will define the joint distribution PUV (u, v) = PV (v)PU |V=v(u),
and thus the value of I(U ;V ). Let QU be a probability distribution on U .

4



d) Show that
∑

v∈V PV (v)D
(
pU |V=v

∥∥QU

)
≥ I(U ;V ).

We have,

=
∑
v

PV (v)D(PU |V=v||QU)− I(U ;V )

=
∑
v

PV (v)
∑
u

PU |V (u|v)

[
log2

PU |V (u|v)

QU(u)
− log2

PU |V (u|v)

PU(u)

]
=
∑
u,v

PUV (uv) log2

PU(u)

QU(u)

=
∑
u

PU(u) log2

PU(u)

QU(u)

= D(PU ||QU)

≥ 0.

e) Show that maxvD
(
PU |V=v

∥∥QU

)
≥ C where C = maxPV

I(U ;V ).

We have,

max
v
D
(
PU |V=v

∥∥QU

)
≥
∑
v

PV (v)D
(
PU |V=v

∥∥QU

)
,

and from 2.d. we get ∑
v

PV (v)D
(
PU |V=v

∥∥QU

)
≥ I(U ;V ).

Since the left hand side does not depend on PV and inequality holds for every PV ,
we find

max
v
D
(
PU |V=v

∥∥QU

)
≥ C.

Suppose c : U → {0, 1}∗ is a uniquely decodable code.

f) Show that
max

v

{
E [length(c(U)) |V = v]−H(U |V = v)

}
≥ C.

Let QU(u) = 2− length c(u)∑
u′ 2
− length c(u′) . Since c is uniquely decodable,

∑
u′ 2
− length c(u′) ≤ 1; thus

length(c(u)) ≥ − log2Q(u). We now see

E[length(c(U))|V = v)]−H(U |V = v) ≥
∑
u

PU |V (u|v) log
1

Q(u)
−
∑
u

P (u|v) log
1

PU |V (u|v)

= D(PU |V=v||QU).

Using 2.e., the required inequality follows.

Suppose we know that X1, . . . , Xn are i.i.d. binary random variables, but we are unaware
of the value t = P (X1 = 1). Despite our lack of knowledge of the true value of t, we design
a uniquely decodable code

cn : {0, 1}n → {0, 1}∗,

with the aim to make E[length cn(Xn)] close to H(Xn) = nh2(t).
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g) No matter how we designed cn, show that

max
t∈[0,1]

{
E[length cn(Xn)]− nh2(t)

}
≥ 1

2
log2b

√
n/2c − 1.

Let k = b
√
n/2c and let T be uniformly distributed in {0/k, . . . , k/k} as in 2.a. Note

that with this choice of k we have n ≥ 2k2. So that I(T ;Xn) ≥ 1
2

log2 k− 1 from 2.c.
With U := Xn, and V := T , we have

max
t∈[0,1]

{
E[length cn(Xn)]− nh2(t)

}
≥ max

t∈{0/k,...,k/k}

{
E[length cn(Xn)]− nh2(t)

}
≥ C

≥ I(Xn;T )

≥ 1

2
log2 k − 1.
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Problem 3. Suppose . . . , U−1, U0, U1, U2, . . . is a stationary process. Given a k > 0
and a function f : Uk → {0, 1}, define the binary process . . . , V−1, V0, V1, V2, . . . via
Vi = f(Ui, Ui−1, . . . , Ui−(k−1)). (E.g., Vi = 1{Ui > (Ui−1 + · · ·+ Ui−7)/7} indicates that the
process exceeded its ‘7 day moving average’ at time i, Vi = 1

{
Ui > Ui−1 > ... > Ui−(k−1)

}
indicates that the process has had k successive increases.)

a) Show that Zi = (Ui, Vi) and Z ′i = (Ui, Vi+1) are stationary processes.

Let F (u, u1, . . . , uk) = (u, f(u1, . . . , uk)). With this notation

Zi = F (Ui, Ui, Ui−1, . . . , Ui−(k−1)).

Observe now that

Z1, Z2, · · · = F (U1, U1, . . . , U2−k), F (U2, U2, . . . , U2−(k−1)), . . . (∗)

and

Zn+1, Zn+1, . . . = F (Un+1, Un+1, . . . , Un+2−k), F (Un+2, Un+2, . . . , Un+3−k), . . . (∗∗)

The stationarity of Ui means that for any n, if we replace ..., U−1, U0, U1, . . . with
. . . , Un−1, Un, Un+1 in (*) the statistics of the left hand side will not change. But
this replacement changes (*) into (**). Thus we see that for any n the statistics of
Z1, Z2, ... is the same as Zn+1, Zn+2, ..., which means that Zi is a stationary process.

To prove the stationarity of Z ′i we can use the same reasoning above by noting that

Z ′1, Z
′
2, ... = F (U1, U2, U1, .., U3−k), F (U2, U3, U2, ..., U4−k), ...

and

Z ′n+1, Z
′
n+2, ... = F (Un+1, Un+2, Un+1..., Un+3−k), F (Un+2, Un+3, Un+2, ..., Un+4−k), ...

b) What is the relationship between the entropy rates of Z, Z ′, and U?

Observe that H(Zn) = H(Un, V n) = H(Un) +H(V n|Un).

As Vi is a function of Ui, ..Ui−(k−1), for n ≥ k, we see that conditioned on Un, the values
of Vk, ..Vn are fully determined, so H(V n|Un) = H(V k−1|Un) ≤ H(V k−1) ≤ (k − 1).
Thus

1

n
H(Un) ≤ 1

n
H(Zn) ≤ 1

n
H(Un) +

k − 1

n
.

Taking the limit as n to infinity, we see that the entropy rate of U and Z are the
same. The same reasoning shows that the entropy rate of U and Z ′ are also the same;
so the three entropy rates are all equal.

c) Let ηn = H(Vn |U1, . . . , Un−1), n = 1, 2, . . . . Show that η = limn→∞ ηn exists and
η ∈ [0, 1].

Note that

ηn+1 = H(Vn+1|U1, ..., Un)

≤ H(Vn+1|U2, ..., Un) [conditioning reduces entropy]

= H(Vn|U1...Un−1) [stationarity]

= ηn.

So {ηn} is a non-increasing sequence. it is also bounded from below (by zero), con-
sequently η = limn→∞ ηn exists and is non-negative. Also note that ηn ≤ H(Vn) ≤ 1,
so η ≤ 1.
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d) Show that the entropy rate of V is larger than or equal to η.

Let an = H(Vn|V n−1). Note that the entropy rate of V is limit of the sequence an.
For n > k, Un−1 determines the values of Vk, ..., Vn−1. Thus

ηn = H(Vn|Un−1)

= H(Vn|Un−1, Vk, ..., Vn−1)

≥ H(Vn|Vk, ..., Vn−1) [conditioning reduces entropy]

= H(Vn−k+1|V1, .., Vn−k) [stationarity]

= an−(k−1).

Taking the limit of both sides over n establishes the result.

e) Explain what (if anything) is wrong with the following reasoning:
“For n > k, Vn is a function of Un, . . . , Un−(k−1), so

H(Vn |U1, . . . , Un−1) = H(Vn |Un−(k−1), . . . , Un−1).

By stationarity H(Vn |Un−(k−1), . . . , Un−1) = H(Vk |U1, . . . , Uk−1). So ηn = ηk for
n > k; consequently η = ηk.”

The argument is faulty because Vn being a function of Un...Un−(k−1) does not mean
that it has no statistical dependence on Ui with i < n− (k− 1). So in the expression
H(Vn|U1...., Un−1) one cannot remove Ui’s with i < n − (k − 1) and claim the value
of H(Vn|U1...., Un−1) is not changed. As an example, let Ui be a binary stationary
Markov process, with Pr(Ui+1 = u|Ui = u) = 0.9 for all i and all u ∈ {0, 1}. The
stationary distribution of this process is P (Ui = 0) = P (Ui = 1) = 1/2. Let k = 1
and Vn = Un. The faulty reasoning would say “Vn is only a function of Un, so

H(Vn|U1, ..., Un−1) = H(Vn).

But the left hand side is h2(0.9) while the right hand side is 1.

Suppose we attempt to guess the value of Vn from the observations U1, ..., Un−1. To that end,
we construct functions gn : Un−1 → {0, 1} and form V̂n = gn(U1, ..., Un−1), n = 1, 2, . . . .
Let pn = Pr(V̂n 6= Vn).

f) Show that h2(pn) ≥ ηn.

We have,

ηn = H(Vn|Un−1)

= H(Vn|Un−1, V̂n) [V̂n is a function of Un−1]

≤ H(Vn|V̂n) [conditioning reduces entropy]

≤ h2(pn) + pn log2(|cV | − 1) [Fano’s Inequality]

= h2(pn). [|V| = 2].
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g) Let p∗n denote the minimum possible value of pn among all choices of gn. Show that
p∗ = limn→∞ p

∗
n exists, and h2(p

∗) ≥ η.

Let g∗n(u1, ..., un−1) be a function that minimizes pn. Take now gn+1 as the function
gn+1(u1, ..., un) = g∗n(u2, ..., un). With this gn+1, we have

p∗n+1 ≤ Pr(Vn+1 6= V̂n+1) [p∗n+1is the minimum possible]

= Pr(Vn+1 6= gn+1(U1...Un))

= Pr(Vn+1 6= g∗n(U2...Un))

= Pr(Vn 6= g∗n(U1...Un+1)) [stationarity]

= p∗n

So p∗n is a non-increasing sequence, and is bounded (by zero and one). Thus p∗ =
limn p

∗n exists. Moreover, since h2(.) is continuous

h2(p
∗) = lim

n
h2(p

∗
n) ≥ lim

n
ηn = η.
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