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1 Metropolis-Hastings algorithm: applications

Reminder. We would like to sample from a distribution π = (πi, i ∈ S) on state space S. One option for
this is the Metropolis-Hastings algorithm:

1. Consider a base chain on S with transition probabilities ψij
(irreducible, aperiodic and such that ψij > 0 if and only if ψji > 0)

2. Define acceptance probabilities aij = min

(
1,
πj ψji
πi ψij

)
3. Define then

pij =

{
aij ψij if j 6= i

ψii +
∑
k∈S\i ψik(1− aik) if j = i

4. Assume there exists i with ψii > 0, or there exists a pair i 6= k s.t ψik > 0 and aik < 1. Then,
the Markov chain on S with transition probabilities pij is such that pij(n) −→

n→∞
πj and detailed

balance holds. Running then the Markov chain from an arbitrary initial state i ∈ S for a sufficiently
large amount of time (so that pij(n) is indeed close to πj for all j ∈ S) is a way to (approximately)
sample from π.

We will see in the following two applications of this algorithm.

1.1 Optimization of a function

Let f : Z→ R be a function to be minimized, which is assumed to be bounded from below and such that
limi→±∞ f(i) = +∞ (so that at least one global minimum exists).

Problem: If the function f is complicated and has many local minima, then (greedy) algorithms usually
fail to converge to a global minimum1.

Our aim: to sample from the distribution

π∞(i) =
I{i is a global minimum of f}

Z∞
, i ∈ Z

where Z∞ = ](global minima of f). Sampling from π∞ is a difficult task because

1. we have to compute Z∞, and

2. the global minima may be very isolated on the state space, hence checking the neighborhood of i is
not sufficient to compute I{i is a global minimum of f}.

Instead, we will sample from the distribution πβ :

πβ(i) =
e−βf(i)

Zβ
, i ∈ Z

where β > 0 is a fixed parameter and Zβ =
∑
i∈Z e

−βf(i) is the normalization constant (that might still
be difficult to compute). The idea is that as β increases, distribution πβ concentrates around the global

minima of f , hence πβ
β→∞−→ π∞.

1This typically also happens when Z, the domain of the function, is replaced by a finite but high-dimensional domain.
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To avoid computing Zβ , we will use the Metropolis-Hastings algorithm to construct a Markov chain
having πβ as its stationary distribution:

1. We choose a simple irreducible base chain (such that ψij > 0 iff ψji > 0), the symmetric random
walk on Z: ψi,i±1 = 1

2 (remember that this chain has no stationary distribution, yet this does not
influence the algorithm in any way).

2. The acceptance probabilities are

aij = min

(
1,
πj
πi

)
=

{
min

(
1, e−β(f(j)−f(i))

)
j = i± 1,

0 otherwise.

In words, we always accept a transition to a state with a lower value of f , but we still accept some
non-favorable transitions to avoid getting stuck in a local minimum.

3. The constructed chain having transition probabilities

pij =

{
ψijaij j 6= i,

1−
∑
k 6=i ψikaik j = i,

is such that pij(n)
n→∞−→ πβ(j) ∀j ∈ S.

1.1.1 How to choose β ?

Let us give a ballpark estimate to choose β correctly. Note that this is just a qualitative idea which can
only serve as a first guide when these ideas are applied to specific problems. To choose β, we decide that
we want to spend a 1− ε fraction of time in global minima. Recall that πi is the average fraction of time
that the chain spends in state i when it has reached the stationary distribution. Thus we set

1− ε ≈
∑

i global minimum

πβ(i)

Let f0 = mini∈Z f(i) be the global minimum and f1 = mini∈Z,f(i) 6=f0
f(i), f2 = mini∈Z,f(i) 6=f0,f1

f(i),
. . . be the local minima. Let N0, N1, N2, . . . be the number of points were the minima f0, f1, f2, . . . are
reached. We have∑

i global minimum

πβ(i) =
N0e

−βf0

Z
and Z =

∑
i∈Z

e−βf(i) =
∑
k≥0

Nke
−βfk ≈ N0e

−βf0 +N1e
−βf1

(as we think of β being reasonably large and f0 < f1 < f2 < . . .). Therefore:∑
i global minimum

πβ(i) ≈ N0e
−βf0

N0e−βf0 +N1e−βf1
=

1

1 + N1

N0
e−β(f1−f0)

≈ 1− N1

N0
e−β(f1−f0)

Remembering that we want this term to be approximately equal to 1− ε, we obtain the following rough
estimate for β:

β ≈ 1

f1 − f0
log

(
N1

εN0

)

1.1.2 In practice: simulated annealing

The choice of β can influence the output of the Metropolis algorithm significantly:

• If we choose β large, then πβ is close to π∞, but the chain produced by the algorithm converges
very slowly due to the high probability given to self-loops. In essence, the chain can almost become
reducible.
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• If we choose β small, then the chain produced by the algorithm converges quickly to the stationary
distribution πβ at the cost of potentially being very far from π∞.

The ideal solution would be to combine the best of both worlds, similarly to creating certain alloys: simply
mixing the metals at high temperature then immediately bringing the system down to room temperature
does not give the alloy the desired properties. Instead, the temperature should be decreased at a slow
speed for the metals to bond appropriately.

Consider β as representing an inverse temperature. Then the annealing approach detailed above gives us
a good algorithm to find a global minimum:

1. Start with β small (i.e. high temperature regime): the algorithm will then visit all the states of S
quite uniformly at the beginning. After a sufficiently high number of iterations, the Metropolized
chain is roughly distributed as πβ .

2. Increase then β (i.e. lower the temperature) and rerun the algorithm from the state found in the
previous step.

3. Repeat step 2 until β is sufficiently large, so that one can hope to have reached a global minimum.

1.2 Graph coloring

Let G = (V,E) be a graph with vertex set V (|V | = N) and edge set E. We want to color each vertex
of the graph with one of the q colors at our disposal such that a vertex’s color differs from that of all its
neighbors, as seen below:

More formally, let S be the set of all possible color configurations on G and x = (xv, v ∈ V ) ∈ S a
particular color configuration. A proper q-coloring of G is any configuration x such that ∀v, w ∈ V , if
(v, w) ∈ E then xv 6= xw.

Our aim: to sample uniformly amongst the proper q-colorings of G. In other words, we want to sample
from the distribution

π(x) =
I{x is a proper q-coloring}

Z
, x ∈ S

where Z = ]( proper q-colorings)

Remark 1.1. Let ∆ = maxv∈V deg(v). If q ≥ ∆ + 1, then there exists at least one proper q-coloring.

In what follows, we are going to restrict our analysis to graphs satisfying q > 3∆.

One way to sample from π is by using the following algorithm:

1. Start from a proper q-coloring x ∈ S.

2. Select a vertex v ∈ V uniformly at random.

3. Select a color c ∈ {1, . . . , q} uniformly at random.

4. If c is an allowed color at v, then recolor v (i.e. set xv = c); do nothing otherwise.
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5. Repeat steps 2, 3 and 4.

Remark 1.2. Since the algorithm started from a proper q-coloring x ∈ S, every visited state is also a
proper q-coloring.

Remark 1.3. The algorithm could also be used to find a proper q-coloring on G. Indeed, if we start the
algorithm in a state x′ ∈ S that is not a proper coloring, the algorithm ensures that eventually a proper
coloring will be reached.

Definition 1.4. Let x, y ∈ S be two color configurations. We write x ∼ y if x and y differ in at most
one vertex.

Remark 1.5. The algorithm is actually an instance of the Metropolis-Hastings algorithm:

1. Let the base chain be ψxy =


1
Nq y ∼ x, y 6= x,
1
q y = x,

0 otherwise.

ψ is aperiodic (due to self-loops) and satisfies ψxy > 0 iff ψyx > 0 (due to symmetry). Moreover,
the condition q > 3∆ ensures that ψ is irreducible.2

2. axy = min
(

1,
πy

πx

)
= min

(
1,

I{y is a proper q-coloring}/Z
1/Z

)
= I{y is a proper q-coloring}.

(NB: we already know that x is a proper q-coloring).

3.

pxy =

{
ψxyaxy y 6= x,

1−
∑
z∈S\x ψxzaxz y = x

=


1
Nq I{y is a proper q-coloring} y ∼ x, y 6= x,

1− 1
Nq ]{z ∼ x, z 6= x, z proper q-coloring} y = x,

0 otherwise.

1.2.1 Convergence rate analysis

The mixing time of this chain is Tε = inf {n ≥ 1 : maxx proper q-coloring ‖Pnx − π‖TV ≤ ε}.

Theorem 1.6. If q > 3∆, then for all proper q-colorings x, ‖Pnx − π‖TV ≤ Ne−
n
N (1− 3∆

q ), implying that

Tε ≤
1

1− 3∆
q

N

(
log(N) + log

(
1

ε

))
Remark 1.7. The proof given below is completely constructive in the sense that it avoids using the
general structure theorems seen so far. This is often the case when one wants to derive concrete estimates
about mixing times.

Proof. Let (Xn, n ≥ 0) be a Markov chain on S starting at X0 = x (a proper q-coloring) and evolving
according to P . Let (Yn, n ≥ 0) be a Markov chain on S starting at Y0 ∼ π and also evolving according
to P .

We will couple X and Y as follows:

1. Select a vertex v ∈ V uniformly at random.

2. Select a color c ∈ {1, . . . , q} uniformly at random.

2We do not prove this fact here. The analysis of the mixing time in the next section is self-contained and independent
of this proof.
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3. Update X at vertex v if c is an allowed color.
Update Y at vertex v if c is an allowed color.

Definition 1.8. The Hamming distance between two colorings x and y is the number of positions in
which x and y disagree:

d(x, y) =
∑
v∈V

I{xv 6=yv}

By a coupling argument seen in previous lectures, we have

‖Pnx − π‖TV ≤ P (Xn 6= Yn) = P (d (Xn, Yn) ≥ 1) ≤ E(d (Xn, Yn)),

where the last inequality is obtained by using the Markov inequality.

All that is left to do now is to upper bound E(d (Xn, Yn)). We will do so using two inductions:

1. Assume first that d (X0, Y0) = 1, i.e. X0 and Y0 differ at one vertex only, and let v be that vertex.
Due to the coupling, at most one vertex can change color per transition, hence d (X1, Y1) ∈ {0, 1, 2}
and

E(d (X1, Y1)) = 0 · P (d (X1, Y1) = 0) + 1 · P (d (X1, Y1) = 1) + 2 · P (d (X1, Y1) = 2)

= (1− P (d (X1, Y1) = 0)) + P (d (X1, Y1) = 2)

d (X1, Y1) = 0 if and only if vertex v is chosen (with probability 1
N ) and that the color c chosen is

allowed in both chains X and Y , hence

P (d (X1, Y1) = 0) =
1

N
· ] allowed colors at v

q
≥ 1

N
· q −∆

q

d (X1, Y1) = 2 if and only if the vertex w chosen is a neighbor of v and that either X or Y is
recolored (but not both). The latter only happens when the chosen color c satisfies c = xv or
c = yv, so we have

P (d (X1, Y1) = 2) ≤ ∆

N
· 2

q

Gathering both estimates together, we obtain

E(d (X1, Y1)) ≤
(

1− 1

N

q −∆

q

)
+

∆

N

2

q
= 1− 1

N

(
1− 3∆

q

)
2. Suppose now that d (X0, Y0) = r. Since P describes an irreducible Markov chain, there exists a

sequence of r − 1 states Z
(1)
0 , . . . , Z

(r−1)
0 such that

p
X0Z

(1)
0
p
Z

(1)
0 Z

(2)
0
. . . p

Z
(r−1)
0 Y0

> 0,

d
(
X0, Z

(1)
0

)
= d

(
Z

(1)
0 , Z

(2)
0

)
= · · · = d

(
Z

(r−1)
0 , Y0

)
= 1

This implies that

E(d (X1, Y1)) ≤ E(d
(
X1, Z

(1)
1

)
) + E(d

(
Z

(1)
1 , Z

(2)
1

)
) + · · ·+ E(d

(
Z

(r−1)
1 , Y1

)
)

= r

(
1− 1

N

(
1− 3∆

q

))
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3. This inequality is valid between times 0 and 1, but by time-homogeneity of the chain, it also holds
between times n− 1 and n for n ≥ 1:

E(d (Xn, Yn) |d (Xn−1, Yn−1) = r) ≤ r
(

1− 1

N

(
1− 3∆

q

))
From the above (averaging over r) we deduce that

E(d (Xn, Yn)) ≤
(

1− 1

N

(
1− 3∆

q

))
E(d (Xn−1, Yn−1))

=⇒ E(d (Xn, Yn)) ≤ E(d (X0, Y0))

(
1− 1

N

(
1− 3∆

q

))n
≤ Ne−

n
N (1− 3∆

q )

which completes the proof.
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