Homework 9

Exercise 1. On the state space $S = \{0, 1, 2\}$ and given $\beta > 0$, consider the following distribution:

$$\pi = \frac{1}{Z} \left(1, e^{-2\beta}, e^{-\beta} \right)$$

where the normalization constant $Z=1+e^{-2\beta}+e^{-\beta}$ is easy to compute in this case. For any given $\beta>0$, we would like to sample from π , in order to obtain (by taking β large) an estimate of the global minimum of the function $f:S\to\mathbb{Z}$ defined as f(0)=0, f(1)=2 and f(2)=1. Of course, in this situation, both finding the global minimum of f and sampling from the distribution π are trivial tasks, but the idea here is to get an idea of the performance (i.e. rate of convergence) of the Metropolis-Hastings algorithm in a simple case.

Consider the base chain on S with transition probabilities

$$\psi_{01} = \psi_{21} = 1$$
 and $\psi_{10} = \psi_{12} = \frac{1}{2}$.

- a) Compute the transition probabilities p_{ij} of the corresponding Metropolis chain.
- b) Check that the detailed balance equation is satisfied.
- c) Compute the eigenvalues $\lambda_0 \geq \lambda_1 \geq \lambda_2$ of P. (Hint: You already know that $\lambda_0 = 1$.)
- d) Express the spectral gap γ as a function of β . How does it behave as β gets large?