LECTURE 9

YASH LODHA

1. TENSORS AND DIFFERENTIAL k-FORMS

Definition 1.1. Let V be an n-dimensional real vector space and £ > 1. A covariant k-tensor T on V is a
multilinear function

T:VF=Vx.xV =R
where multilinear means that it is linear on each factor of V, i.e.
T(v1y ey aV; + b0L, ooy vy) = aT (V1 oy Uiy ooy V) + DT (01, oy Uy oy 0,

We denote the set of covariant k-tensors as T%(V). This is a real vector space with scalar multiplication and
pointwise addition. Covariant 1-tensors are just linear maps to R. We extend the definition to & = 0 by
declaring that a covariant O-tensor is just a constant.

Exercise 1.2. Show that covariant 2-tensors (also called bilinear maps) V- x V. — R are in bijective corre-
spondence with n x n matrices. Show that the determinant map viewed as a function on an n X n matriz is a
covariant n-tensor on R™, with input the n row vectors of the matrix.

Definition 1.3. Let S € T*(V),T € T'(V). We define the tensor product as
ST : VR S® T(Ul, ~-~7'Uk+l) = S(Ul, ...,Uk)T(’U]H_l, ---a'Uk-H)

Note that the definition allows us to write the tensor product of three or more tensors unambiguously without
parenthesis.

Lemma 1.4. Let ey, ...,e, be a basis for V, and let &', ...,e™ be a dual basis (i.e. the bais for V*). Then a basis
for T*(V) consists of elements of the form

N ®... R 1 <4y, <1
In particular, dimT*(V) = n*.
Proof. First we show that this collection is linearly independent. Assume that

Z Til)””ikEil ®®€lk =0

1§i1,...,ik§n

Then evaluating the above on (e, ..., e;,) we obtain that T;, _;, =0, proving our claim.
Now we show that these vectors span T*(V). Let T € T*K(V). Let T}, . i = T(e;,...,e;,) for each
1 <iq,...,7ix < n. Then it follows that

T = E Til,...,ik‘g“ K. Q& gt
1§i1,.‘.7ik§n

by multilinearity since the evaluation of the above on the basis vectors (ej,,...,€;,.) for 1 < iq,...,i < n of
V x ... x V (k-times) is equal. O

We remark that it is also common to use the notation ®*V* for T*(V'). The previous Lemma makes it clear
why this is natural, and we shall use it from now on.

1.1. Alternating tensors.
Definition 1.5. We say that a tensor T € @*V* is alternating, if
T(21, 0y @iy ooy Ty ooy ) = =TT, 00y Ty ooy Ty ooy Th) Vey,...,op €V

The set of alternating covariant k-tensors is denoted as A¥V* and is a subspace of @*V*.
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Exercise 1.6. T € ®@*V* is alternating if and only if it is of the form

T = Z Ti1 ’’’’’ ikEil ®®€Zk

1<i1,ccyin<n

with the property that Ty, . ;. = sgn(a)TiU(l)W_’ia(k) for each o € Sy. Here Sy is the group of permutations on
k elements and sgn(o) is the sign of the permutation. (Recall this from your group theory or algebra course).

Let eq,...,e, be a basis for V and let €',...,e"™ be the corresponding dual basis for V* as usual. For a
multi-index I = (i1, ...,ix) € {1,...,n}*, we define the following alternating covariant tensor

el = E sgn(o)et"M ® ... ® glom
oc€S)

These are called elementary alternating tensors.
When evaluating €/ on (X1, ..., X3) € V x ... x V, we obtain

D LD ¢4
(x)  e'(X1,..., Xg) = Det
D LD ¢
Exercise 1.7. Demonstrate the last formula. Hint: Use induction on k.

Lemma 1.8. The elementary tensors satisfy the following:

(1) el =0 if I has a repeated index.
(2) If J = o(I) for some permutation o, then e’ = sgn(o)el.
(3) For J = (j1,...,Jx) a multi-indez, we have

El(ejl,...,ejk) =0 if I or J have a repeated index or are not permutations of each other
el(ejy,rej) = sgn(o) if J=0(I) and J has no repeated indices

We call a multi-index I = (iy, ..., 1) increasing, if i; < ... < ix,. We show that the elementary alternating
tensors given by the increasing multi-indices provide a basis for the space AFV*.

Proposition 1.9. The set
{e" | T = (ir, i), 1 <iy < ... <ix <n}

is a basis for AFV*.
Exercise 1.10. Prove the above proposition.

The above Proposition implies that dimA*V* = (}). For k = n this is just a 1-dimensional space, spanned
by (1™ which is just the determinant function as given by the formula () above.

Definition 1.11. We define the wedge product
A ARV AV — ARy
as the unique bilinear map that satisfies
el nel =X
where
I:{ilw-vik} J:{jla“'7jl} K:{ila---aiknjla“'ajl}
Note that if we have w € A*V* v € A'V* then
wAv=(-DFvAw

This motivates the notation: the space A¥V* is a linear combination of k-fold wedge product of covariant
1-tensors, which are just covectors.

Note that any O-tensor is alternating, and that A°V* = ®@°V* = R. The wedge product of a 0-tensor
Ae ANV  =cec R withv e AFV*is A\Av = cv.



2. DIFFERENTIAL k-FORMS ON MANIFOLDS

Let M be a smooth manifold of dimension n. We shall apply the definitions from the previous lecture to the
case where V = T, M. For each p € M, we obtain the (Z)—dimensional vector space of alternating k-tensors,
which is denoted as AkT;M . If (z1,...,2™) are local coordinates on a neighbourhood of p then a basis of
AR(TE M) is

do) =dall A Adal T = (i, .0k), 1< i < <@g <n
Evaluated on a k-tuple of coordinate vectors
% b% b T = (1)

we obtain 5 9
dw;(% |p» 0 Sy lp) = sgn(o)

where o is the permutation such that J = o(I). The union
AM(T*M) = ] AM(T; M)
peEM

is a smooth vector bundle of rank (Z) in a natural way as follows.
Given a smooth chart (U, (x!,...,2™)) around p € M, a local trivialisation for A*T* M is given by

U AkT;M — U x R(Z) (pv Z Cldx{;) — (P» (CI)I an increasing multi—index)

peU I an increasing multi-index

The maps p — dxllj provide smooth sections and a smooth local frame for this is
p—{dal | I = (i1, ....ix), 1 < iy < ... <ip <n}
Example 2.1. The vector bundle A2(T*R?) has a global frame given by dx A dy, dy A dz,dz A dz.

Definition 2.2. A smooth section of A*T* M is called a differential k-form. The set of differential k-forms on M
is denoted as Q% (M). Note that for k = 0 a differential O-form is just a smooth function, so Q°(M) = C=(M).



