LECTURE 9

YASH LODHA

1. Tensors and Differential k-Forms

Definition 1.1. Let V be an n-dimensional real vector space and $k \geq 1$. A covariant k-tensor T on V is a multilinear function

$$
T: V^{k}=V \times \ldots \times V \rightarrow \mathbf{R}
$$

where multilinear means that it is linear on each factor of V, i.e.

$$
T\left(v_{1}, \ldots, a v_{i}+b v_{i}^{\prime}, \ldots, v_{n}\right)=a T\left(v_{1}, \ldots, v_{i}, \ldots, v_{n}\right)+b T\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{n}\right)
$$

We denote the set of covariant k-tensors as $T^{k}(V)$. This is a real vector space with scalar multiplication and pointwise addition. Covariant 1 -tensors are just linear maps to \mathbf{R}. We extend the definition to $k=0$ by declaring that a covariant 0 -tensor is just a constant.

Exercise 1.2. Show that covariant 2 -tensors (also called bilinear maps) $V \times V \rightarrow \mathbf{R}$ are in bijective correspondence with $n \times n$ matrices. Show that the determinant map viewed as a function on an $n \times n$ matrix is a covariant n-tensor on \mathbf{R}^{n}, with input the n row vectors of the matrix.

Definition 1.3. Let $S \in T^{k}(V), T \in T^{l}(V)$. We define the tensor product as

$$
S \otimes T: V^{k+l} \rightarrow \mathbf{R} \quad S \otimes T\left(v_{1}, \ldots, v_{k+l}\right)=S\left(v_{1}, \ldots, v_{k}\right) T\left(v_{k+1}, \ldots, v_{k+l}\right)
$$

Note that the definition allows us to write the tensor product of three or more tensors unambiguously without parenthesis.

Lemma 1.4. Let e_{1}, \ldots, e_{n} be a basis for V, and let $\varepsilon^{1}, \ldots, \varepsilon^{n}$ be a dual basis (i.e. the bais for $V *$). Then a basis for $T^{k}(V)$ consists of elements of the form

$$
\varepsilon^{i_{1}} \otimes \ldots \otimes \varepsilon^{i_{k}} \quad 1 \leq i_{1}, \ldots, i_{k} \leq n
$$

In particular, $\operatorname{dim} T^{k}(V)=n^{k}$.
Proof. First we show that this collection is linearly independent. Assume that

$$
\sum_{1 \leq i_{1}, \ldots, i_{k} \leq n} T_{i_{1}, \ldots, i_{k}} \varepsilon^{i_{1}} \otimes \ldots \otimes \varepsilon^{i_{k}}=0
$$

Then evaluating the above on $\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$ we obtain that $T_{i_{1}, \ldots, i_{k}}=0$, proving our claim.
Now we show that these vectors span $T^{k}(V)$. Let $T \in T^{k}(V)$. Let $T_{i_{1}, \ldots, i_{k}}=T\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$ for each $1 \leq i_{1}, \ldots, i_{k} \leq n$. Then it follows that

$$
T=\sum_{1 \leq i_{1}, \ldots, i_{k} \leq n} T_{i_{1}, \ldots, i_{k}} \varepsilon^{i_{1}} \otimes \ldots \otimes \varepsilon^{i_{k}}
$$

by multilinearity since the evaluation of the above on the basis vectors $\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$ for $1 \leq i_{1}, \ldots, i_{k} \leq n$ of $V \times \ldots \times V(k$-times $)$ is equal.

We remark that it is also common to use the notation $\otimes^{k} V^{*}$ for $T^{k}(V)$. The previous Lemma makes it clear why this is natural, and we shall use it from now on.

1.1. Alternating tensors.

Definition 1.5. We say that a tensor $T \in \otimes^{k} V^{*}$ is alternating, if

$$
T\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{k}\right)=-T\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{k}\right) \quad \forall x_{1}, \ldots, x_{k} \in V
$$

The set of alternating covariant k-tensors is denoted as $\Lambda^{k} V^{*}$ and is a subspace of $\otimes^{k} V^{*}$.

Exercise 1.6. $T \in \otimes^{k} V^{*}$ is alternating if and only if it is of the form

$$
T=\sum_{1 \leq i_{1}, \ldots, i_{k} \leq n} T_{i_{1}, \ldots, i_{k}} \varepsilon^{i_{1}} \otimes \ldots \otimes \varepsilon^{i_{k}}
$$

with the property that $T_{i_{1}, \ldots, i_{k}}=\operatorname{sgn}(\sigma) T_{i_{\sigma(1)}, \ldots, i_{\sigma(k)}}$ for each $\sigma \in S_{k}$. Here S_{k} is the group of permutations on k elements and $\operatorname{sgn}(\sigma)$ is the sign of the permutation. (Recall this from your group theory or algebra course).

Let e_{1}, \ldots, e_{n} be a basis for V and let $\varepsilon^{1}, \ldots, \varepsilon^{n}$ be the corresponding dual basis for V^{*} as usual. For a multi-index $I=\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, n\}^{k}$, we define the following alternating covariant tensor

$$
\varepsilon^{I}=\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \varepsilon^{i_{\sigma(1)}} \otimes \ldots \otimes \varepsilon^{i_{\sigma(n)}}
$$

These are called elementary alternating tensors.
When evaluating ε^{I} on $\left(X_{1}, \ldots, X_{k}\right) \in V \times \ldots \times V$, we obtain

$$
(*) \quad \varepsilon^{I}\left(X_{1}, \ldots, X_{k}\right)=\operatorname{Det}\left(\begin{array}{ccc}
X_{1}^{i_{1}} & \ldots & X_{k}^{i_{1}} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
X_{1}^{i_{k}} & \ldots & X_{k}^{i_{k}}
\end{array}\right)
$$

Exercise 1.7. Demonstrate the last formula. Hint: Use induction on k.
Lemma 1.8. The elementary tensors satisfy the following:
(1) $\varepsilon^{I}=0$ if I has a repeated index.
(2) If $J=\sigma(I)$ for some permutation σ, then $\varepsilon^{J}=\operatorname{sgn}(\sigma) \varepsilon^{I}$.
(3) For $J=\left(j_{1}, \ldots, j_{k}\right)$ a multi-index, we have

$$
\begin{aligned}
& \varepsilon^{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=0 \quad \text { if } I \text { or } J \text { have a repeated index or are not permutations of each other } \\
& \varepsilon^{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=\operatorname{sgn}(\sigma) \quad \text { if } J=\sigma(I) \text { and } J \text { has no repeated indices }
\end{aligned}
$$

We call a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$ increasing, if $i_{1}<\ldots<i_{k}$. We show that the elementary alternating tensors given by the increasing multi-indices provide a basis for the space $\Lambda^{k} V^{*}$.

Proposition 1.9. The set

$$
\left\{\varepsilon^{I} \mid I=\left(i_{1}, \ldots, i_{k}\right), 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}
$$

is a basis for $\Lambda^{k} V^{*}$.
Exercise 1.10. Prove the above proposition.
The above Proposition implies that $\operatorname{dim} \Lambda^{k} V^{*}=\binom{n}{k}$. For $k=n$ this is just a 1-dimensional space, spanned by $\varepsilon^{(1, \ldots, n)}$, which is just the determinant function as given by the formula $(*)$ above.

Definition 1.11. We define the wedge product

$$
\wedge: \Lambda^{k} V^{*} \times \Lambda^{l} V^{*} \rightarrow \Lambda^{k+l} V^{*}
$$

as the unique bilinear map that satisfies

$$
\varepsilon^{I} \wedge \varepsilon^{J}=\varepsilon^{K}
$$

where

$$
I=\left\{i_{1}, \ldots, i_{k}\right\} \quad J=\left\{j_{1}, \ldots, j_{l}\right\} \quad K=\left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{l}\right\}
$$

Note that if we have $\omega \in \Lambda^{k} V^{*}, \nu \in \Lambda^{l} V^{*}$ then

$$
\omega \wedge \nu=(-1)^{k l} \nu \wedge \omega
$$

This motivates the notation: the space $\Lambda^{k} V^{*}$ is a linear combination of k-fold wedge product of covariant 1-tensors, which are just covectors.

Note that any 0 -tensor is alternating, and that $\Lambda^{0} V^{*}=\otimes^{0} V^{*}=\mathbf{R}$. The wedge product of a 0 -tensor $\lambda \in \Lambda^{0} V^{*}=c \in \mathbf{R}$ with $\nu \in \Lambda^{k} V^{*}$ is $\lambda \wedge \nu=c \nu$.

2. Differential k-FORMS On manifolds

Let M be a smooth manifold of dimension n. We shall apply the definitions from the previous lecture to the case where $V=T_{p} M$. For each $p \in M$, we obtain the $\binom{n}{k}$-dimensional vector space of alternating k-tensors, which is denoted as $\Lambda^{k} T_{p}^{*} M$. If $\left(x^{1}, \ldots, x^{n}\right)$ are local coordinates on a neighbourhood of p then a basis of $\Lambda^{k}\left(T_{p}^{*} M\right)$ is

$$
d x_{p}^{I}=d x_{p}^{i_{1}} \wedge \ldots \wedge d x_{p}^{i_{k}} \quad I=\left(i_{1}, \ldots, i_{k}\right), 1 \leq i_{1}<\ldots<i_{k} \leq n
$$

Evaluated on a k-tuple of coordinate vectors

$$
\left.\frac{\partial}{\partial x^{j_{1}}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{j_{k}}}\right|_{p} \quad J=\left(j_{1}, \ldots, j_{k}\right)
$$

we obtain

$$
d x_{p}^{I}\left(\left.\frac{\partial}{\partial x^{j_{1}}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{j_{k}}}\right|_{p}\right)=\operatorname{sgn}(\sigma)
$$

where σ is the permutation such that $J=\sigma(I)$. The union

$$
\Lambda^{k}\left(T^{*} M\right)=\bigcup_{p \in M} \Lambda^{k}\left(T_{p}^{*} M\right)
$$

is a smooth vector bundle of rank $\binom{n}{k}$ in a natural way as follows.
Given a smooth chart $\left(U,\left(x^{1}, \ldots, x^{n}\right)\right)$ around $p \in M$, a local trivialisation for $\Lambda^{k} T^{*} M$ is given by

$$
\bigcup_{p \in U} \Lambda^{k} T_{p}^{*} M \rightarrow U \times \mathbf{R}^{\binom{n}{k}} \quad\left(p, \sum_{I \text { an increasing multi-index }} C_{I} d x_{p}^{I}\right) \mapsto\left(p,\left(C_{I}\right)_{I \text { an increasing multi-index }}\right)
$$

The maps $p \rightarrow d x_{p}^{I}$ provide smooth sections and a smooth local frame for this is

$$
p \rightarrow\left\{d x_{p}^{I} \mid I=\left(i_{1}, \ldots, i_{k}\right), 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}
$$

Example 2.1. The vector bundle $\Lambda^{2}\left(T^{*} \mathbf{R}^{3}\right)$ has a global frame given by $d x \wedge d y, d y \wedge d z, d x \wedge d z$.
Definition 2.2. A smooth section of $\Lambda^{k} T^{*} M$ is called a differential k-form. The set of differential k-forms on M is denoted as $\Omega^{k}(M)$. Note that for $k=0$ a differential 0 -form is just a smooth function, so $\Omega^{0}(M)=C^{\infty}(M)$.

