
LECTURE 9

YASH LODHA

1. Tensors and Differential k-forms

Definition 1.1. Let V be an n-dimensional real vector space and k ≥ 1. A covariant k-tensor T on V is a
multilinear function

T : V k = V × ...× V → R

where multilinear means that it is linear on each factor of V , i.e.

T (v1, ..., avi + bv′i, ..., vn) = aT (v1, ..., vi, ..., vn) + bT (v1, ..., v
′
i, ..., vn)

We denote the set of covariant k-tensors as T k(V ). This is a real vector space with scalar multiplication and
pointwise addition. Covariant 1-tensors are just linear maps to R. We extend the definition to k = 0 by
declaring that a covariant 0-tensor is just a constant.

Exercise 1.2. Show that covariant 2-tensors (also called bilinear maps) V × V → R are in bijective corre-
spondence with n × n matrices. Show that the determinant map viewed as a function on an n × n matrix is a
covariant n-tensor on Rn, with input the n row vectors of the matrix.

Definition 1.3. Let S ∈ T k(V ), T ∈ T l(V ). We define the tensor product as

S ⊗ T : V k+l → R S ⊗ T (v1, ..., vk+l) = S(v1, ..., vk)T (vk+1, ..., vk+l)

Note that the definition allows us to write the tensor product of three or more tensors unambiguously without
parenthesis.

Lemma 1.4. Let e1, ..., en be a basis for V , and let ε1, ..., εn be a dual basis (i.e. the bais for V ∗). Then a basis
for T k(V ) consists of elements of the form

εi1 ⊗ ...⊗ εik 1 ≤ i1, ..., ik ≤ n

In particular, dimT k(V ) = nk.

Proof. First we show that this collection is linearly independent. Assume that∑
1≤i1,...,ik≤n

Ti1,...,ikε
i1 ⊗ ...⊗ εik = 0

Then evaluating the above on (ei1 , ..., eik) we obtain that Ti1,...,ik = 0, proving our claim.
Now we show that these vectors span T k(V ). Let T ∈ T k(V ). Let Ti1,...,ik = T (ei1 , ..., eik) for each

1 ≤ i1, ..., ik ≤ n. Then it follows that

T =
∑

1≤i1,...,ik≤n

Ti1,...,ikε
i1 ⊗ ...⊗ εik

by multilinearity since the evaluation of the above on the basis vectors (ei1 , ..., eik) for 1 ≤ i1, ..., ik ≤ n of
V × ...× V (k-times) is equal. �

We remark that it is also common to use the notation ⊗kV ∗ for T k(V ). The previous Lemma makes it clear
why this is natural, and we shall use it from now on.

1.1. Alternating tensors.

Definition 1.5. We say that a tensor T ∈ ⊗kV ∗ is alternating, if

T (x1, ..., xi, ..., xj , ..., xk) = −T (x1, ..., xj , ..., xi, ..., xk) ∀x1, ..., xk ∈ V

The set of alternating covariant k-tensors is denoted as ΛkV ∗ and is a subspace of ⊗kV ∗.
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Exercise 1.6. T ∈ ⊗kV ∗ is alternating if and only if it is of the form

T =
∑

1≤i1,...,ik≤n

Ti1,...,ikε
i1 ⊗ ...⊗ εik

with the property that Ti1,...,ik = sgn(σ)Tiσ(1),...,iσ(k) for each σ ∈ Sk. Here Sk is the group of permutations on

k elements and sgn(σ) is the sign of the permutation. (Recall this from your group theory or algebra course).

Let e1, ..., en be a basis for V and let ε1, ..., εn be the corresponding dual basis for V ∗ as usual. For a
multi-index I = (i1, ..., ik) ∈ {1, ..., n}k, we define the following alternating covariant tensor

εI =
∑
σ∈Sk

sgn(σ)εiσ(1) ⊗ ...⊗ εiσ(n)

These are called elementary alternating tensors.
When evaluating εI on (X1, ..., Xk) ∈ V × ...× V , we obtain

(∗) εI(X1, ..., Xk) = Det


Xi1

1 ... Xi1
k

. .

. .

. .

Xik
1 ... Xik

k


Exercise 1.7. Demonstrate the last formula. Hint: Use induction on k.

Lemma 1.8. The elementary tensors satisfy the following:

(1) εI = 0 if I has a repeated index.
(2) If J = σ(I) for some permutation σ, then εJ = sgn(σ)εI .
(3) For J = (j1, ..., jk) a multi-index, we have

εI(ej1 , ..., ejk) = 0 if I or J have a repeated index or are not permutations of each other

εI(ej1 , ..., ejk) = sgn(σ) if J = σ(I) and J has no repeated indices

We call a multi-index I = (i1, ..., ik) increasing, if i1 < ... < ik. We show that the elementary alternating
tensors given by the increasing multi-indices provide a basis for the space ΛkV ∗.

Proposition 1.9. The set

{εI | I = (i1, ..., ik), 1 ≤ i1 < ... < ik ≤ n}
is a basis for ΛkV ∗.

Exercise 1.10. Prove the above proposition.

The above Proposition implies that dimΛkV ∗ =
(
n
k

)
. For k = n this is just a 1-dimensional space, spanned

by ε(1,...,n), which is just the determinant function as given by the formula (∗) above.

Definition 1.11. We define the wedge product

∧ : ΛkV ∗ × ΛlV ∗ → Λk+lV ∗

as the unique bilinear map that satisfies

εI ∧ εJ = εK

where

I = {i1, ..., ik} J = {j1, ..., jl} K = {i1, ..., ik, j1, ..., jl}
Note that if we have ω ∈ ΛkV ∗, ν ∈ ΛlV ∗ then

ω ∧ ν = (−1)klν ∧ ω

This motivates the notation: the space ΛkV ∗ is a linear combination of k-fold wedge product of covariant
1-tensors, which are just covectors.

Note that any 0-tensor is alternating, and that Λ0V ∗ = ⊗0V ∗ = R. The wedge product of a 0-tensor
λ ∈ Λ0V ∗ = c ∈ R with ν ∈ ΛkV ∗ is λ ∧ ν = cν.



3

2. Differential k-forms on manifolds

Let M be a smooth manifold of dimension n. We shall apply the definitions from the previous lecture to the
case where V = TpM . For each p ∈ M , we obtain the

(
n
k

)
-dimensional vector space of alternating k-tensors,

which is denoted as ΛkT ∗pM . If (x1, ..., xn) are local coordinates on a neighbourhood of p then a basis of

Λk(T ∗pM) is

dxIp = dxi1p ∧ ... ∧ dxikp I = (i1, ..., ik), 1 ≤ i1 < ... < ik ≤ n
Evaluated on a k-tuple of coordinate vectors

∂

∂xj1
|p, ...,

∂

∂xjk
|p J = (j1, ..., jk)

we obtain

dxIp(
∂

∂xj1
|p, ...,

∂

∂xjk
|p) = sgn(σ)

where σ is the permutation such that J = σ(I). The union

Λk(T ∗M) =
⋃
p∈M

Λk(T ∗pM)

is a smooth vector bundle of rank
(
n
k

)
in a natural way as follows.

Given a smooth chart (U, (x1, ..., xn)) around p ∈M , a local trivialisation for ΛkT ∗M is given by⋃
p∈U

ΛkT ∗pM → U ×R(nk) (p,
∑

I an increasing multi-index

CIdx
I
p) 7→ (p, (CI)I an increasing multi-index)

The maps p→ dxIp provide smooth sections and a smooth local frame for this is

p→ {dxIp | I = (i1, ..., ik), 1 ≤ i1 < ... < ik ≤ n}

Example 2.1. The vector bundle Λ2(T ∗R3) has a global frame given by dx ∧ dy, dy ∧ dz, dx ∧ dz.

Definition 2.2. A smooth section of ΛkT ∗M is called a differential k-form. The set of differential k-forms on M
is denoted as Ωk(M). Note that for k = 0 a differential 0-form is just a smooth function, so Ω0(M) = C∞(M).


