CS-438 Decentralized Systems Engineering

Week 10

Permissionless consensus, multi-valued history consensus Bitcoin, distributed ledger tech (OLT):

- Infarmation-based money: a ledger

Kex ideas:
-ledger publicly indicates
"Who ours what") tor
- miners reward
adding blocks
- hinges on history consensus
-nd double - spending

Bitcoin consensus

- who gets to add a black on what basis?
-almost all of real cost is from Poll
-deliberate, artificial cost to creatingladdingblk
- a (hawest) miner only accepts valid bblockswl Pow
- deterministic agreed-upon validity function
- but which next valid block? (consensus)

"51\% attacks"
\Rightarrow statistically, longest heaviest always "wins" eventually

Permiscianed consensus, on histories / ledgers

Key challenges

- "Multi-Paxas" - history
- Raft: re-formulation of Paxes
-PBFT: Castrolliokor
- Pacing: when does a TX/b/k get added?
- Paxos/Raf+/PBFT/...: leader -based what if leader fails? \rightarrow synchrony
$\rightarrow D_{0} S$ opportunities
- Bitcoin: P\&W: tuned for target of $2 / B-10$ ming
- Asynchronous pacing / consensus:
can always progress as fast as network communication permits?

Asynchronous pacing, consensus

- Threshold Lagical (lock (TLC)

- a single (integper) notion of "time-steps" across group
-paced: no nole "get aheal" of (majority) of the redt (vs Lampart cloctes)
- HW3: using Paxos (example)

paxas - needs sychrong to achieve liveness
praperss)
- preparel re.seruo

Asynchronans TLCs, "Que Sera Consensus" (QSC)

each node at step s wait's to proceed to $s+1$:

- received updates from threshold t of otter nodes
- at least t nodes have all received updates from at least of nodes
- I know a set $|M| \geqslant+$ that have been received by at least t nodes

