
OP1: Exokernel in Disguise

1 Ideas from the exokernel
One of the main idea of Arrakis [2] is that the role of the kernel should be limited to setting
up data channels. Once this setup phase is over, applications can directly access the hardware,
without any intervention from the kernel. This is similar to the idea in the exokernel [1] that the
kernel should only protect resources, not manage them.

As both kernels only controls access to hardware, applications can choose a library operating
system providing higher level abstractions, or create their own. Library operating system is also
a concept proposed by the exokernel OS. These are libraries executing in the same protection
domain than applications. They provide abstractions usually provided by the OS, such as virtual
memory or thread scheduling. Applications can use existing one or create their own library
operating system adapted to their needs.

2 Differences with the exokernel
Both kernels separate authorization from protection when using secure bindings. When an appli-
cation wants to use a resource, the kernel performs authorization checks at bind time. At access
time the kernel or the hardware perform only protection checks.

Arrakis uses hardware secure bindings, while exokernel uses a combination of both hard-
ware and software secure bindings. In Arrakis, the kernel only setup the secure bindings. Then
applications can directly access virtualized hardware without any kernel intervention as the hard-
ware performs protection checks. Exokernel uses a combination of hardware and software secure
bindings when an application accesses virtual memory. Hardware secure bindings are used when
the virtual memory mapping is present in the hardware TLB. If there is a TLB miss, then the
kernel handles the secure binding in software. The exokernel also implements software secure
bindings for network by allowing applications to download code into the kernel.

Arrakis uses invisible resource revocation, while exokernel uses visible resource revocation.
In exokernel, when the kernel wants to reclaim a resource used by an application, the kernel
explicitly asks the application to give back the resource. This is called visible revocation. In
Arrakis, the kernel allocates and deallocates virtual resources as needed without application in-
volvement . This is called invisible revocation.

References
[1] Dawson R Engler, M Frans Kaashoek, and James O’Toole Jr. Exokernel: An operating

system architecture for application-level resource management. ACM SIGOPS Operating
Systems Review, 29(5):251–266, 1995. [online].

[2] Simon Peter, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system as
control plane. In Proc. 11th USENIX Conf. Oper. Syst. Des. Implement, volume 38, pages
44–47, 2013. [online].

1

https://dl.acm.org/doi/10.1145/224057.224076
https://www.usenix.org/system/files/login/articles/09_peter_44-47_online.pdf

	Ideas from the exokernel
	Differences with the exokernel

