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Problem 1. Consider an additive noise channel with input x ∈ R, and output

Y = x+ Z

where Z is a real random variable independent of the input x, has zero mean and variance
equal to σ2.

In this problem we prove in a different way from the lecture that the Gaussian channel
has the smallest capacity among all additive noise channels of a given noise variance. Let
Nσ2 denote the Gaussian density with zero mean and variance σ2.

(a) Denote the input probability density by pX . Verify that

I(X;Y ) =

∫∫
pX(x)pZ(y − x) ln

pZ(y − x)

pY (y)
dxdy nats.

where pY is the density of the output when the input has density pX .

(b) Now set pX = NP . Verify that

1
2

ln
(
1 + P/σ2

)
=

∫∫
pX(x)pZ(y − x) ln

Nσ2(y − x)

NP+σ2(y)
dxdy.

(c) Still with pX = NP , show that

1
2

ln(1 + P/σ2)− I(X;Y ) ≤ 0.

[Hint: use (a) and (b) and ln t ≤ t− 1.]

(d) Show that an additive noise channel with noise variance σ2 and input power P has
capacity at least 1

2
log2(1 + P/σ2) bits per channel use. Conclude that the Gaussian

channel has the smallest capacity among all additive noise channels of a given noise
variance.

Problem 2. A discrete memoryless channel has three input symbols: {−1, 0, 1}, and two
output symbols: {1,−1}. The transition probabilities are

p(−1| − 1) = p(1|1) = 1, p(1|0) = p(−1|0) = 0.5.

Find the capacity of this channel with cost constraint β, if the cost function is b(x) = x2.

Problem 3. Consider a vector Gaussian channel described as follows:

Y1 = x+ Z1

Y2 = Z2

where x is the input to the channel constrained in power to P ; Z1 and Z2 are jointly
Gaussian random variables with E[Z1] = E[Z2] = 0, E[Z2

1 ] = E[Z2
2 ] = σ2 and E[Z1Z2] =

ρσ2, with ρ ∈ [−1, 1], and independent of the channel input.



(a) Consider a receiver that discards Y2 and decodes the message based only on Y1. What
rates are achievable with such a receiver?

(b) Consider a receiver that forms Y = Y1− ρY2, and decodes the message based only on
Y . What rates are achievable with such a receiver?

(c) Find the capacity of the channel and compare it to the part (b).

Problem 4. In this problem we will show that a binary linear code contains 2k codewords
for some k. Suppose C is a binary linear code of block length n, that is, C is a non-empty
set of binary sequences of length n with the property that if x and y are in C so is their
modulo 2 sum. Consider the following algorithm.

(i) Initialize D to be the set that contains only the all-zero sequence.

(ii) If C does not contain any element not in D stop. Otherwise C contains
an element x not in D. Form D′ = {x+ y : y ∈ D}.

(iii) Augment D to D ∪D′ where D′ is found above, and go to step (ii).

(a) Show that the all-zero sequence is in C so that at the end of step (i) D ⊂ C. Note
that initially |D| = 1 which is a power of 2.

(b) Show that if D is a linear subset of C and there is an x that is in C but not in D,
then D′ formed in (ii) is a subset of C. [The phrase “A is a linear subset of B” means
that A is a subset of B, and that if x ∈ A and y ∈ A then x+ y ∈ A.]

(c) Under the assumptions of (b) show that D′ is disjoint from D.

(d) Again under the assumptions of (b) show that D′ has the same number of elements
as D.

(e) Still under the assumptions of (b) show that D ∪D′ is a linear subset of C.

(f) Using parts (b), (c), (d) and (e) show that if at the beginning of step (ii) D is a linear
subset of C, then at the end of step (iii) D is still a linear subset of C and it has twice
as many elements as in the beginning. Conclude that when the algorithm terminates
D = C and the number of elements in D is a power of 2.

Note that the above algorithm also gives a generator matrix G for the code: Let x1, . . . , xk
be the codewords that are picked at the successive stages of step (ii) of the algorithm. It
then follows that each codeword in C can be written as a (unique) linear combination of
these xi’s. Taking G as the matrix whose rows are the xi’s gives us the generator matrix.

Problem 5. Consider appending an overall parity check to the codewords of Hamming
code: Each codeword of a Hamming code is extended by 1 bit which is 0 if the codeword
contains an even number of 1’s and 1 if the codeword contains an odd number of 1’s.
For example, for the (7,4,3) Hamming code discussed in class, the codeword 0000000 be-
comes 00000000, the codeword 1110000 becomes 11100001, the codeword 1111111 becomes
11111111, etc. Show that this new code has minimum distance 4, can correct 1 error, and
can detect 2 errors. This class of (2m, 2m − m − 1, 4) codes are known as the “extended
Hamming codes.”

Problem 6.
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(a) Show that in a binary linear code, either all codewords contain an even number of
1’s or half the codewords contain an odd number of 1’s and half an even number.

(b) Let xm,n be the nth digit in the mth codeword of a binary linear code. Show that
for any given n, either half or all of the xm,n are zero. If all of the xm,n are zero for a
given n, explain how the code could be improved.

(c) Show that the average number of ones per codeword, averaged over all codewords in
a linear binary code of blocklength N , can be at most N/2.
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