LECTURE 10

YASH LODHA

Before we initiate the study of differential k-forms on manifolds, we shall state some basic properties of alternating tensors and the wedge product. Let V be an n-dimensional vector space. Recall that $\otimes^{k} V^{*}$ is the n^{k}-dimensional real vector space of covariant k-tensors. Each element of this vector space is a multilinear map $V \times \ldots \times V \rightarrow \mathbf{R}$, where the domain is a k-fold product. We denote the $\binom{n}{k}$-dimensional subspace of alternating k-tensors by $\Lambda^{k} V^{*}$. Given a multi-index $I \subseteq\{1, \ldots, n\}$, we define

$$
\varepsilon^{I} \in \Lambda^{k} V^{*} \quad \varepsilon^{I}=\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \varepsilon^{i_{\sigma(1)}} \otimes \ldots \otimes \varepsilon^{i_{\sigma(k)}} \quad I=\left(i_{1}, \ldots, i_{k}\right)
$$

Given $\omega \in \Lambda^{k} V^{*}, \nu \in \Lambda^{l} V^{*}$, we define the wedge product $\omega \wedge \nu \in \Lambda^{k+l} V^{*}$ as the unique multilinear map that satisfies

$$
\varepsilon^{I} \wedge \varepsilon^{J}=\varepsilon^{K} \quad K=\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{l}\right), I=\left(i_{1}, \ldots, i_{k}\right), J=\left(j_{1}, \ldots, j_{l}\right)
$$

The following are some elementary features of the wedge product.
Proposition 0.1. (1) (Bilinearity) For $a, b \in \mathbf{R}$

$$
\left(a \omega+b \omega^{\prime}\right) \wedge \nu=a(\omega \wedge \nu)+b\left(\omega^{\prime} \wedge \nu\right)
$$

(2) (Associativity)

$$
\omega \wedge(\nu \wedge \psi)=(\omega \wedge \nu) \wedge \psi
$$

(3) (Anticommutativity) For $\omega \in \Lambda^{k} V^{*}, \nu \in \Lambda^{l} V^{*}$ we have

$$
\omega \wedge \nu=(-1)^{k l} \nu \wedge \omega
$$

(4) If $\varepsilon^{1}, \ldots, \varepsilon^{n}$ is a basis for V^{*} and $I=\left(i_{1}, \ldots, i_{k}\right)$ is a multiindex, then

$$
\varepsilon^{I}=\varepsilon^{i_{1}} \wedge \varepsilon^{i_{2}} \wedge \ldots \wedge \varepsilon^{i_{k}}
$$

(5) For any covectors $\omega^{1}, \ldots, \omega^{k}$ and vectors v_{1}, \ldots, v_{k}

$$
\omega^{1} \wedge \ldots \wedge \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{Det}\left(\omega^{j}\left(v_{i}\right)\right)
$$

1. Differential k-Forms on manifolds

Let M be a smooth manifold of dimension n. We shall apply the definitions from the previous lecture to the case where $V=T_{p} M$. For each $p \in M$, we obtain the $\binom{n}{k}$-dimensional vector space of alternating k-tensors, which is denoted as $\Lambda^{k} T_{p}^{*} M$. If $\left(x^{1}, \ldots, x^{n}\right)$ are local coordinates on a neighbourhood of p then a basis of $\Lambda^{k}\left(T_{p}^{*} M\right)$ is

$$
d x_{p}^{I}=d x_{p}^{i_{1}} \wedge \ldots \wedge d x_{p}^{i_{k}} \quad I=\left(i_{1}, \ldots, i_{k}\right), 1 \leq i_{1}<\ldots<i_{k} \leq n
$$

Evaluated on a k-tuple of coordinate vectors

$$
\left.\frac{\partial}{\partial x^{j_{1}}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{j_{k}}}\right|_{p} \quad J=\left(j_{1}, \ldots, j_{k}\right)
$$

we obtain

$$
d x_{p}^{I}\left(\left.\frac{\partial}{\partial x^{j_{1}}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{j_{k}}}\right|_{p}\right)=\operatorname{sgn}(\sigma)
$$

where σ is the permutation such that $J=\sigma(I)$. The union

$$
\Lambda^{k}\left(T^{*} M\right)=\bigcup_{p \in M} \Lambda^{k}\left(T_{p}^{*} M\right)
$$

is a smooth vector bundle of rank $\binom{n}{k}$ in a natural way as follows.
Given a smooth chart $\left(U,\left(x^{1}, \ldots, x^{n}\right)\right)$ around $p \in M$, a local trivialisation for $\Lambda^{k} T^{*} M$ is given by

$$
\bigcup_{p \in U} \Lambda^{k} T_{p}^{*} M \rightarrow U \times \mathbf{R}^{\binom{n}{k}} \quad\left(p, \sum_{I \text { an increasing multi-index }} C_{I} d x_{p}^{I}\right) \mapsto\left(p,\left(C_{I}\right)_{I \text { an increasing multi-index }}\right)
$$

The maps $p \rightarrow d x_{p}^{I}$ provide smooth sections and a smooth local frame for this is

$$
p \rightarrow\left\{d x_{p}^{I} \mid I=\left(i_{1}, \ldots, i_{k}\right), 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}
$$

Example 1.1. The vector bundle $\Lambda^{2}\left(T^{*} \mathbf{R}^{3}\right)$ has a global frame given by $d x \wedge d y, d y \wedge d z, d x \wedge d z$.
Definition 1.2. A smooth section of $\Lambda^{k} T^{*} M$ is called a differential k-form. The set of differential k-forms on M is denoted as $\Omega^{k}(M)$. Note that for $k=0$ a differential 0 -form is just a smooth function, so $\Omega^{0}(M)=C^{\infty}(M)$.

We shall fix the following notational convention. Sums over increasing multiindices of the form

$$
\sum_{I \subset\{1, \ldots, n\}, I \text { is an increasing multiindex }} C_{I} d x_{p}^{I}
$$

shall be denoted as

$$
\sum_{I}^{\prime} C_{I} d x_{p}^{I}
$$

Definition 1.3. For $\omega \in \Omega^{k}(M)$, we denote $\omega_{p}=\omega(p)$. In local coordinates for a chart (U, ϕ), we denote

$$
\omega_{p}=\sum_{I}^{\prime} \omega_{I}(p) d x_{p}^{I}
$$

for some smooth functions $\omega_{I}: U \rightarrow \mathbf{R}$ which are called the component functions of ω in the given chart. Note that the smoothness is equivalent to requiring that for any list of smooth vector fields X^{1}, \ldots, X^{k} on U, the function

$$
U \rightarrow \mathbf{R} \quad p \mapsto \omega_{p}\left(X_{p}^{1}, \ldots, X_{p}^{k}\right)
$$

is smooth.
We now generalise the notions of wedge product and pullback to the bundle $\Omega^{k}(M)$
Definition 1.4. (Wedge product) Let $\omega \in \Omega^{k}(M), \nu \in \Omega^{l}(M)$. Then the wedge product $\omega \wedge \nu \in \Omega^{k+l}(M)$ is defined as

$$
(\omega \wedge \nu)_{p}=\omega_{p} \wedge \nu_{p}
$$

(Pullback) Let $F: M \rightarrow N$ be a smooth map. Let $\omega \in \Omega^{k}(N)$. Then we define a linear map

$$
F^{*}: \Lambda^{k}\left(T_{F(p)} N\right) \rightarrow \Lambda^{k}\left(T_{p} M\right) \quad F^{*}(\omega)\left(X_{1}, \ldots, X_{k}\right)=\omega\left(F_{*}\left(X_{1}\right), \ldots, F_{*}\left(X_{k}\right)\right)
$$

for

$$
X_{1}, \ldots, X_{k} \in T_{p}(M), \omega \in \Lambda^{k}\left(T_{F(p)} N\right)
$$

Specialising to differential k-forms, we obtain:

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M) \quad F^{*}(\omega)_{p}=F^{*}\left(\omega_{F(p)}\right)
$$

For a 0 -form $f \in C^{\infty}(N)$, we set $F^{*} f=f \circ F$.
In the special case where we have an inclusion map $i: U \rightarrow M$, we denote $i^{*} \omega \in \Omega^{k}(U)$ for $\omega \in \Omega^{k}(M)$ as the restriction of ω. Indeed for $p \in U, i^{*} \omega_{p}=\omega_{p}$.
Lemma 1.5. For $F: M \rightarrow N$ a smooth map, $\omega \in \Omega^{k}(N), \nu \in \Omega^{l}(N)$, we have:
(1) $F^{*}(\omega \wedge \nu)=F^{*}(\omega) \wedge F^{*}(\nu)$.
(2) In any coordinate chart on N,

$$
F^{*}\left(\sum_{I}^{\prime} \omega_{I} d y^{I}\right)=\sum_{I}^{\prime}\left(\omega_{I} \circ F\right) d\left(y^{i_{1}} \circ F\right) \wedge \ldots \wedge d\left(y^{i_{k}} \circ F\right)
$$

Exercise 1.6. Prove the above Lemma. Hint: For part (2), combine part (1) with Lemma 1.9 from Lecture notes 8.

Example 1.7. Let $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the map

$$
F(r, \theta)=(r \cos (\theta), r \sin (\theta))
$$

The pullback of

$$
d x \wedge d y \in \Omega^{2}\left(F\left(\mathbf{R}^{2}\right)\right.
$$

is

$$
F^{*}(d x \wedge d y)=\left(F^{*} d x\right) \wedge F^{*}(d y)=d(x \circ F) \wedge d(y \circ F)
$$

$$
\begin{gathered}
=\left(\frac{\partial}{\partial r} r \cos (\theta) d r+\frac{\partial}{\partial \theta} r \cos (\theta) d \theta\right) \wedge\left(\frac{\partial}{\partial r} r \sin (\theta) d r+\frac{\partial}{\partial \theta} r \sin (\theta) d \theta\right) \\
=(\cos (\theta) d r-r \sin (\theta) d \theta) \wedge(\sin (\theta) d r+r \cos (\theta) d \theta) \\
=r \cos ^{2}(\theta)(d r \wedge d \theta)+r \sin ^{2}(\theta)(d r \wedge d \theta)=r d r \wedge d \theta
\end{gathered}
$$

In general the pullback of an n-form for a smooth map between two n-dimensional manifolds is given by the following formula. (Note that the value n is the same throughout).

Proposition 1.8. Let $F: M \rightarrow N$ be a smooth map. Let $\left(U, x^{i}\right)$ be a chart on M and $\left(V, y^{i}\right)$ be a chart on N. Let $u \in C^{\infty}(M)$. Then

$$
F^{*}\left(u d y^{1} \wedge \ldots \wedge d y^{n}\right)=(u \circ F)\left(\operatorname{Det}\left(\frac{\partial F^{j}}{\partial x^{i}}\right)\right) d x^{1} \wedge \ldots \wedge d x^{n} \quad F^{j}=y^{j} \circ F
$$

Proof. Since $\Lambda^{n}\left(T_{p}^{*} M\right), \Lambda^{n}\left(T_{F(p)}^{*} N\right)$ are 1-dimensional, it suffices to show that the evaluation of both sides of the equality on $\left(\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right)$ are equal. From the Lemma above, the left hand side equals

$$
(u \circ F) d F^{1} \wedge \ldots d F^{n} \quad F^{i}=y^{i} \circ F
$$

The result then follows from

$$
d F^{1} \wedge \ldots \wedge d F^{n}\left(\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right)=\operatorname{Det}\left(d F^{i}\left(\frac{\partial}{\partial x^{j}}\right)\right)=\operatorname{Det}\left(\frac{\partial F^{i}}{\partial x^{j}}\right)
$$

Note that specialising the above Proposition to the case when $M=N, F=i d_{M}, u=1_{M}$, and $\left(U, x^{i}\right),\left(V, y^{i}\right)$ just two different charts on M, we obtain the following change of coordinates formula:

$$
d y^{1} \wedge \ldots \wedge d y^{n}=\operatorname{Det}\left(\frac{\partial y^{j}}{\partial x^{i}}\right) d x^{1} \wedge \ldots \wedge d x^{n}
$$

2. The exterior derivative

The differential of a smooth function in $C^{\infty}(M)$ is a 1-form on M. Since we view $C^{\infty}(M)$ as $\Omega^{0}(M)$, this provides a map

$$
d: \Omega^{0}(M) \rightarrow \Omega^{1}(M)
$$

The generalisation of this is the following operation on k-forms which is first defined locally as:

$$
\begin{gathered}
(*) \quad d: \Omega^{k}(U) \rightarrow \Omega^{k+1}(U) \quad U \subseteq M,\left(U, x^{i}\right) \text { a chart on } M \\
\omega=\sum_{I}^{\prime} \omega_{I} d x^{I} \mapsto d_{U} \omega=\sum_{I}^{\prime} d \omega_{I} \wedge d x^{I}
\end{gathered}
$$

Here $d \omega_{I} \in \Omega^{1}(U)$ is the differential, viewing $\omega_{I} \in C^{\infty}(U)=\Omega^{0}(U)$. Note that this is a local definition. The global definition is provided by the following theorem.

First we state the following Lemma shall be needed in the proof of the theorem.
Lemma 2.1. Let $f, g \in C^{\infty}(M)$. Then $d(f g)_{p}=f(p) d g_{p}+g(p) d f_{p}$.
Proof. We choose a chart $\left(U, x^{i}\right)$ centered at p.

$$
\begin{aligned}
d(f g)_{p}=\left.\sum_{1 \leq i \leq n} \frac{\partial f g}{\partial x^{i}}\right|_{p} d x_{p}^{i} & =\left.f(p) \sum_{1 \leq i \leq n} \frac{\partial g}{\partial x^{i}}\right|_{p} d x_{p}^{i}+\left.g(p) \sum_{1 \leq i \leq n} \frac{\partial f}{\partial x^{i}}\right|_{p} d x_{p}^{i} \\
& =f(p) d g_{p}+g(p) d f_{p}
\end{aligned}
$$

Theorem 2.2. Let M be a smooth n-manifold. For each $k \in \mathbf{N}$, there is a unique map

$$
d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)
$$

satisfying the following:
(1) If $f \in C^{\infty}(M)=\Omega^{0}(M)$ then df is the usual differential, i.e. $d f(X)=X f$.
(2) For $\omega \in \Omega^{k}(M), \nu \in \Omega^{l}(M)$, we have

$$
d(\omega \wedge \nu)=d \omega \wedge \nu+(-1)^{k} \omega \wedge d \nu
$$

(3) $d^{2}=0$.

Moreover, for each individual chart, in local coordinates d is given by the formula (*) above. We call d the exterior derivative.

Proof. First we will show that the three conditions hold for the case when $\left(U, x^{i}\right)$ is a global chart on M, i.e. when M is diffeomorphic to \mathbf{R}^{n}. Part 1 is immediate from the definition. We first show part 2. Let

$$
\omega=\sum_{I}^{\prime} \omega_{I} d x^{I} \quad \nu=\sum_{I}^{\prime} \nu_{I} d x^{I}
$$

By multilinearity, it suffices to show that

$$
d\left(\omega_{I} d x^{I} \wedge \nu_{J} d x^{J}\right)=\left(d \omega_{I} \wedge d x^{I}\right) \wedge\left(\nu_{J} d x^{J}\right)+\left(-1^{k}\right)\left(\omega_{I} d x^{I}\right) \wedge\left(d \nu_{J} \wedge d x^{J}\right)
$$

We have

$$
\begin{gathered}
d\left(\omega_{I} d x^{I} \wedge \nu_{J} d x^{J}\right)=d\left(\omega_{I} \nu_{J} d x^{I} \wedge d x^{J}\right) \\
=\left(\nu_{J} d \omega_{I}+\omega_{I} d \nu_{J}\right) \wedge d x^{I} \wedge d x^{J} \\
=\left(\nu_{J} d \omega_{I}\right) \wedge d x^{I} \wedge d x^{J}+\left(\omega_{I} d \nu_{J}\right) \wedge d x^{I} \wedge d x^{J} \\
=\left(d \omega_{I} \wedge d x^{I}\right) \wedge\left(\nu_{J} d x^{J}\right)+\left(d \nu_{J}\right) \wedge\left(\omega_{I} d x^{I}\right) \wedge d x^{J} \\
=\left(d \omega_{I} \wedge d x^{I}\right) \wedge\left(\nu_{J} d x^{J}\right)+(-1)^{k}\left(\omega_{I} d x^{I}\right) \wedge\left(d \nu_{J} \wedge d x^{J}\right)
\end{gathered}
$$

Note that the $(-1)^{k}$ appears from the anticommutativity law

$$
d \psi_{1} \wedge d \psi_{2}=(-1)^{k l} d \psi_{2} \wedge d \psi_{1} \quad \psi_{1} \in \Omega^{k}(M), \psi_{2} \in \Omega^{l}(M)
$$

and since $\omega_{I} d x^{I} \in \Omega^{k}(M), d \nu_{J} \in \Omega^{1}(M)$.
Now we show part 3 . First we show this for a 0 -form $\omega \in C^{\infty}(M)=\Omega^{0}(M)$. Then

$$
\begin{aligned}
d(d f) & =d\left(\sum_{1 \leq i \leq n} \frac{\partial f}{\partial x^{i}} d x^{i}\right)=\sum_{1 \leq i, j \leq n} \frac{\partial f}{\partial x^{i} \partial x^{j}} d x^{i} \wedge d x^{j} \\
& =\sum_{1 \leq i<j \leq n}\left(\frac{\partial f}{\partial x^{i} \partial x^{j}}-\frac{\partial f}{\partial x^{j} \partial x^{i}}\right) d x^{i} \wedge d x^{j}=0
\end{aligned}
$$

We now prove the general case for $\nu \in \Omega^{k}(M), \nu=\sum_{I}^{\prime} \nu_{I} d x^{I}$.

$$
\begin{gathered}
d(d \nu)=d\left(\sum_{I}^{\prime} d \nu_{I} \wedge d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}\right) \\
=\sum_{I}^{\prime} d(d u) \wedge d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}+\sum_{I}^{\prime} \sum_{1 \leq j \leq k} d u \wedge \ldots \wedge d\left(d x^{i_{j}}\right) \wedge \ldots \wedge d x^{i_{k}}
\end{gathered}
$$

We now prove the existence and uniqueness of the exterior derivative for the general case, i.e. for an arbitrary smooth manifold. Let $\omega \in \Omega^{k}(M)$. We wish to define $d \omega \in \Omega^{k+1}(M)$ by means of local coordinate charts, locally, and then prove the global existence and independence of the choice of coordinates. Let (U, ϕ) be a chart for M. We set

$$
d \omega=\phi^{*} d\left(\left(\phi^{-1}\right)^{*} \omega\right)
$$

Given any other chart (V, η), we obtain

$$
\begin{gathered}
\left.\eta^{*} d\left(\left(\eta^{-1}\right)^{*} \omega\right)=\phi^{*}\left(\phi^{-1}\right)^{*} \eta^{*} d\left(\eta^{-1}\right)^{*} \omega\right) \\
\left.\left.=\phi^{*}\left(\eta \circ \phi^{-1}\right)^{*} d\left(\eta^{-1}\right)^{*} \omega\right)=\phi^{*} d\left(\left(\eta \circ \phi^{-1}\right)^{*} \eta^{-1}\right)^{*} \omega\right) \\
=\phi^{*} d\left(\left(\eta^{-1} \circ \eta \circ \phi^{-1}\right)^{*} \omega\right)=\phi^{*} d\left(\left(\phi^{-1}\right)^{*} \omega\right)
\end{gathered}
$$

Therefore, the definition is well defined for $U \cap V$.

Exercise 2.3. Use the existence of smooth bump functions to prove the uniqueness part of the previous theorem.

