LECTURE 10

YASH LODHA

Before we initiate the study of differential k-forms on manifolds, we shall state some basic properties of
alternating tensors and the wedge product. Let V be an n-dimensional vector space. Recall that @*V* is the
n*-dimensional real vector space of covariant k-tensors. Each element of this vector space is a multilinear map
V x...xV — R, where the domain is a k-fold product. We denote the (Z)—dimensional subspace of alternating

k-tensors by A*V*. Given a multi-index I C {1,...,n}, we define
el e APV el = Z sgn(o)ele® @ ... @ gle® I=(ig,..., 1)
o€Sk

Given w € A*V* v € A'V*, we define the wedge product w A v € AFHV* as the unique multilinear map that
satisfies
I J_ K . .. . . . o .
e Nel =¢ K = (i1, ey Bk 1y ooy 1), L = (G2 eeyite)y J = (J1y oy J1)
The following are some elementary features of the wedge product.
Proposition 0.1. (1) (Bilinearity) For a,b € R
(aw + bw') Av =a(wAv)+bw Av)
(2) (Associativity)
WA WAY)=(wAV)AY
(3) (Anticommutativity) For w € A¥V* v € A'V* we have
wAv=(-D)FvAw
(4) Ifet,...,e™ is a basis for V* and I = (iy,...,i) is a multiindez, then
el =g A2 AL Ag
1 k

(5) For any covectors w', ...,w" and vectors v, ..., v

WA AW (1, o) = Det(w? (v5))

1. DIFFERENTIAL k-FORMS ON MANIFOLDS

Let M be a smooth manifold of dimension n. We shall apply the definitions from the previous lecture to the
case where V = T,M. For each p € M, we obtain the (Z)—dimensional vector space of alternating k-tensors,
which is denoted as AkT;M. If (x!,...,2") are local coordinates on a neighbourhood of p then a basis of
A (Ty M) is ‘ ‘

do, = dei Ao Adzl T = (iy,.ik), 1 <ip < ... <ip <n

Evaluated on a k-tuple of coordinate vectors

0 0 . .
o b b 7= Ui
we obtain 5 5
I _
dxp(% |107 a3} % |p) - sgn(o)

where o is the permutation such that J = ¢ (7). The union
AM(T*M) = ] AM(T; M)
pEM
is a smooth vector bundle of rank (:) in a natural way as follows.

Given a smooth chart (U, (x!,...,2™)) around p € M, a local trivialisation for A¥T*M is given by

U AkT;M — U x R(Z) (p7 Z C[dl‘II)) — (p7 (CI)I an increasing multi—index)

pelU I an increasing multi-index



2 YASH LODHA

The maps p — deI, provide smooth sections and a smooth local frame for this is
p— {dal | I = (ir,....ix),1 < iy < ... <ip <n}
Example 1.1. The vector bundle A?(T*R?) has a global frame given by dx A dy, dy A dz,dx A dz.

Definition 1.2. A smooth section of AFT* M is called a differential k-form. The set of differential k-forms on M
is denoted as Q*(M). Note that for k = 0 a differential 0-form is just a smooth function, so Q°(M) = C>=(M).

We shall fix the following notational convention. Sums over increasing multiindices of the form

Z C[dl’zl)

IC{1,...,n},I is an increasing multiindex

shall be denoted as
/
>
T
Definition 1.3. For w € QF(M), we denote w, = w(p). In local coordinates for a chart (U, $), we denote

!
wp = Z wI(p)deI)
T

for some smooth functions wy : U — R which are called the component functions of w in the given chart. Note
that the smoothness is equivalent to requiring that for any list of smooth vector fields X!, ..., X* on U, the
function

U—->R  pow(Xy), .. X))

is smooth.
We now generalise the notions of wedge product and pullback to the bundle Q¥ (M)

Definition 1.4. (Wedge product) Let w € Q¥(M),v € Q!(M). Then the wedge product w A v € QFH (M) is
defined as
(WAV), =wp Ay
(Pullback) Let F : M — N be a smooth map. Let w € QF(N). Then we define a linear map
F* i A¥(TppyN) = AM(T,M)  F*(w)(X1,..., Xp) = w(F(X1), ..., Fu (X))
for
X1, ., Xy € Ty(M),w € A¥(Tp,)N)
Specialising to differential k-forms, we obtain:
F*: QF(N) = QF (M) F*(w), = F*(wr@)
For a 0-form f € C*°(N), we set F*f = foF.
In the special case where we have an inclusion map i : U — M, we denote i*w € QF(U) for w € QF(M) as
the restriction of w. Indeed for p € U, i*w, = wp.
Lemma 1.5. For F: M — N a smooth map, w € Q¥(N),v € QY(N), we have:
(1) F*(wAv) = F*(w) A F*(v).
(2) In any coordinate chart on N,

!

F*(> widy") =Y (wro F)d(y™ o F) A ... Ad(y™* o F)
I I

Exercise 1.6. Prove the above Lemma. Hint: For part (2), combine part (1) with Lemma 1.9 from Lecture
notes 8.

Example 1.7. Let F : R?> — R? be the map
F(r,0) = (rcos(8),rsin(d))
The pullback of
dz A dy € Q*(F(R?)
is
F*(dx Ndy) = (F*dx) N F*(dy) =d(zx o F)ANd(yo F)



0 0 0 . 0 .
= (Er cos(0)dr + 2" cos(6)db) A (ar sin(@)dr + 20" sin(6)d6)
= (cos(0)dr — rsin(0)df) A (sin(0)dr + r cos(6)db)
= rcos?(0)(dr A df) + rsin®(0)(dr A d) = rdr A d6

In general the pullback of an n-form for a smooth map between two n-dimensional manifolds is given by the
following formula. (Note that the value n is the same throughout).

Proposition 1.8. Let F': M — N be a smooth map. Let (U,z%) be a chart on M and (V,y*) be a chart on N.
Let w e C*°(M). Then

F _ ,
F*(udy* A ... Ndy™) = (uo F)(Det(%))dx1 Ao A dz” Fl=y oF
xl

Proof. Since A™(TyM),A"(T},N) are 1-dimensional, it suffices to show that the evaluation of both sides of
the equality on (%, e 8‘%) are equal. From the Lemma above, the left hand side equals
(wo FYdF* A ..dF™  F'=4'oF

The result then follows from

= Det(dFi(i)) = Det(aFi

p) o
1 ni_— P
AT NAF™ (o o) O 27

O

Note that specialising the above Proposition to the case when M = N, F = idy,u = 17, and (U, 2%), (V, y")
just two different charts on M, we obtain the following change of coordinates formula:

1 n ﬁy] 1 n
dy" N ... Ndy :Det(T)dx A...Ndx
x'L

2. THE EXTERIOR DERIVATIVE

The differential of a smooth function in C°°(M) is a 1-form on M. Since we view C*°(M) as Q°(M), this
provides a map
d: QM) — Q' (M)
The generalisation of this is the following operation on k-forms which is first defined locally as:

(x)  d:Q8NU) = Q" (U) U C M, (U,z') a chart on M

/ i
w= Zwldacl — dpw = Zdw; A da!
Ji I

Here dw; € QY(U) is the differential, viewing w; € C*°(U) = Q°(U). Note that this is a local definition. The
global definition is provided by the following theorem.
First we state the following Lemma shall be needed in the proof of the theorem.

Lemma 2.1. Let f,g € C>®(M). Then d(fg), = f(p)dgp, + 9(p)dfp.
Proof. We choose a chart (U, ") centered at p.

dfg i 9g i of i
d(fg)p = Z Dt |p day, = f(p) Z Dt lp dxj, + 9(p) Z Dt lp da),
1<i<n 1<i<n 1<i<n

= f(p)dgp + 9(p)df

Theorem 2.2. Let M be a smooth n-manifold. For each k € N, there is a unique map
d: Q8 (M) — QFF (M)
satisfying the following:

(1) If f € C°(M) = Q°(M) then df is the usual differential, i.e. df(X) = Xf.
(2) Forw € QF(M),v € QY(M), we have

dwAv) =dwAv+ (—1)wAdy
(3) d*> = 0.
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Moreover, for each individual chart, in local coordinates d is given by the formula (%) above. We call d the
exterior derivative.

Proof. First we will show that the three conditions hold for the case when (U, x%) is a global chart on M, i.e.
when M is diffeomorphic to R™. Part 1 is immediate from the definition. We first show part 2. Let

/ /
w= Zwldxl V= Z vidz’
I I
By multilinearity, it suffices to show that
d(wrdz" Avyde’) = (dwp Ada") A (vyde”) + (—17)(wrda") A (dvy A dz?)
We have
d(w;dxl Avydz?) = (oJII/deI Adz”)
= (vydwy +wrdvy) A dz’ A dz”
= (vydwr) Ada! Ndx? + (wrdvy) Adx! A da”
= (dwy Adx!) A (vyde?) + (dvy) A (wrda!) A da?
= (dwy A da") A (vgda?) + (=1)*(wrda?) A (dvy A dz?)
Note that the (—1)* appears from the anticommutativity law
dipy Adipy = (—=1)Mdps Adipy 1 € QF(M), 4y € QH(M)
and since wydx! € QF(M),dvy € QY (M).
Now we show part 3. First we show this for a 0-form w € C*°(M) = Q°(M). Then
d(df) =d( gg = > e 1;; ~dz' A da’

1<i<n 1<4,5<n

_ of of i
= > (Gaiger ~ gaigg e’ nd =0

1<i<j<n

We now prove the general case for v € QF(M),v = 3} vrdz!.
!/
d(dv) = d(z dvr Adz't A ... A dzt)

= Zd du) Adz™ A ... A dzt* +Z > dun . Ad(da) A A dat
I 1<j<k
‘We now prove the ex1stence and uniqueness of the exterior derivative for the general case, i.e. for an arbitrary
smooth manifold. Let w € QF(M). We wish to define dw € Q¥*1(M) by means of local coordinate charts, locally,
and then prove the global existence and independence of the choice of coordinates. Let (U, ¢) be a chart for M.
We set

dw = ¢*d((¢™")"w)
Given any other chart (V,7), we obtain
nd((n7h)w) = ¢ (o7 ) ntdn ) w)
=¢*(no ¢~ 1) d(n ) w) = ¢"d((no ¢ ) ") w)
=¢*d((n" omo¢ ) w) = ¢"d((¢7!) W)
Therefore, the definition is well defined for U NV.
O

Exercise 2.3. Use the existence of smooth bump functions to prove the uniqueness part of the previous theorem.



