LECTURE 10

YASH LODHA

Before we initiate the study of differential k-forms on manifolds, we shall state some basic properties of alternating tensors and the wedge product. Let V be an n-dimensional vector space. Recall that $\otimes^k V^*$ is the n^k -dimensional real vector space of covariant k-tensors. Each element of this vector space is a multilinear map $V \times \ldots \times V \to \mathbf{R}$, where the domain is a k-fold product. We denote the $\binom{n}{k}$ -dimensional subspace of alternating k-tensors by $\Lambda^k V^*$. Given a multi-index $I \subseteq \{1, ..., n\}$, we define

$$\varepsilon^{I} \in \Lambda^{k} V^{*}$$
 $\varepsilon^{I} = \sum_{\sigma \in S_{k}} sgn(\sigma) \varepsilon^{i_{\sigma(1)}} \otimes ... \otimes \varepsilon^{i_{\sigma(k)}}$ $I = (i_{1}, ..., i_{k})$

Given $\omega \in \Lambda^k V^*$, $\nu \in \Lambda^l V^*$, we define the wedge product $\omega \wedge \nu \in \Lambda^{k+l} V^*$ as the unique multilinear map that satisfies

$$\varepsilon^{I} \wedge \varepsilon^{J} = \varepsilon^{K} \qquad K = (i_{1}, \dots, i_{k}, j_{1}, \dots, j_{l}), I = (i_{1}, \dots, i_{k}), J = (j_{1}, \dots, j_{l})$$

The following are some elementary features of the wedge product.

Proposition 0.1. (1) (Bilinearity) For $a, b \in \mathbf{R}$

$$(a\omega + b\omega') \wedge \nu = a(\omega \wedge \nu) + b(\omega' \wedge \nu)$$

(2) (Associativity)

$$\omega \wedge (\nu \wedge \psi) = (\omega \wedge \nu) \wedge \psi$$

(3) (Anticommutativity) For $\omega \in \Lambda^k V^*, \nu \in \Lambda^l V^*$ we have

$$\omega \wedge \nu = (-1)^{kl} \nu \wedge \omega$$

(4) If $\varepsilon^1, ..., \varepsilon^n$ is a basis for V^* and $I = (i_1, ..., i_k)$ is a multiindex, then

 $\varepsilon^{I} = \varepsilon^{i_{1}} \wedge \varepsilon^{i_{2}} \wedge \ldots \wedge \varepsilon^{i_{k}}$

(5) For any covectors $\omega^1, ..., \omega^k$ and vectors $v_1, ..., v_k$

$$\omega^1 \wedge \dots \wedge \omega^k(v_1, \dots, v_k) = Det(\omega^j(v_i))$$

1. Differential k-forms on manifolds

Let M be a smooth manifold of dimension n. We shall apply the definitions from the previous lecture to the case where $V = T_p M$. For each $p \in M$, we obtain the $\binom{n}{k}$ -dimensional vector space of alternating k-tensors, which is denoted as $\Lambda^k T_p^* M$. If $(x^1, ..., x^n)$ are local coordinates on a neighbourhood of p then a basis of $\Lambda^k (T_p^* M)$ is

$$dx_p^I = dx_p^{i_1} \wedge \dots \wedge dx_p^{i_k} \qquad I = (i_1, \dots, i_k), 1 \le i_1 < \dots < i_k \le n$$

Evaluated on a k-tuple of coordinate vectors

$$\frac{\partial}{\partial x^{j_1}}|_p, ..., \frac{\partial}{\partial x^{j_k}}|_p \qquad J = (j_1, ..., j_k)$$

we obtain

$$dx_p^I(\frac{\partial}{\partial x^{j_1}}\mid_p, ..., \frac{\partial}{\partial x^{j_k}}\mid_p) = sgn(\sigma)$$

where σ is the permutation such that $J = \sigma(I)$. The union

$$\Lambda^k(T^*M) = \bigcup_{p \in M} \Lambda^k(T^*_pM)$$

is a smooth vector bundle of rank $\binom{n}{k}$ in a natural way as follows.

Given a smooth chart $(U, (x^1, ..., x^n))$ around $p \in M$, a local trivialisation for $\Lambda^k T^*M$ is given by

$$\bigcup_{p \in U} \Lambda^k T_p^* M \to U \times \mathbf{R}^{\binom{n}{k}} \qquad (p, \sum_{I \text{ an increasing multi-index}} C_I dx_p^I) \mapsto (p, (C_I)_I \text{ an increasing multi-index})$$

YASH LODHA

The maps $p \to dx_p^I$ provide smooth sections and a smooth local frame for this is

$$p \to \{ dx_p^I \mid I = (i_1, ..., i_k), 1 \le i_1 < \dots < i_k \le n \}$$

Example 1.1. The vector bundle $\Lambda^2(T^*\mathbf{R}^3)$ has a global frame given by $dx \wedge dy, dy \wedge dz, dx \wedge dz$.

Definition 1.2. A smooth section of $\Lambda^k T^*M$ is called a differential k-form. The set of differential k-forms on M is denoted as $\Omega^k(M)$. Note that for k = 0 a differential 0-form is just a smooth function, so $\Omega^0(M) = C^{\infty}(M)$.

We shall fix the following notational convention. Sums over increasing multiindices of the form

$$\sum_{I \subset \{1,...,n\}, I \text{ is an increasing multiindex}} C_I dx_p^I$$

shall be denoted as

$$\sum_{I}^{\prime} C_{I} dx_{p}^{I}$$

Definition 1.3. For $\omega \in \Omega^k(M)$, we denote $\omega_p = \omega(p)$. In local coordinates for a chart (U, ϕ) , we denote

$$\omega_p = \sum_{I}' \omega_I(p) dx_p^I$$

for some smooth functions $\omega_I : U \to \mathbf{R}$ which are called the *component functions* of ω in the given chart. Note that the smoothness is equivalent to requiring that for any list of smooth vector fields $X^1, ..., X^k$ on U, the function

$$U \to \mathbf{R} \qquad p \mapsto \omega_p(X_p^1, ..., X_p^k)$$

is smooth.

We now generalise the notions of wedge product and pullback to the bundle $\Omega^k(M)$

Definition 1.4. (Wedge product) Let $\omega \in \Omega^k(M), \nu \in \Omega^l(M)$. Then the wedge product $\omega \wedge \nu \in \Omega^{k+l}(M)$ is defined as

$$(\omega \wedge \nu)_p = \omega_p \wedge \nu_p$$

(Pullback) Let $F: M \to N$ be a smooth map. Let $\omega \in \Omega^k(N)$. Then we define a linear map

$$F^*: \Lambda^k(T_{F(p)}N) \to \Lambda^k(T_pM) \qquad F^*(\omega)(X_1, ..., X_k) = \omega(F_*(X_1), ..., F_*(X_k))$$

for

$$X_1, ..., X_k \in T_p(M), \omega \in \Lambda^k(T_{F(p)}N)$$

Specialising to differential k-forms, we obtain:

1

$$F^*: \Omega^k(N) \to \Omega^k(M) \qquad F^*(\omega)_p = F^*(\omega_{F(p)})$$

For a 0-form $f \in C^{\infty}(N)$, we set $F^*f = f \circ F$.

In the special case where we have an inclusion map $i: U \to M$, we denote $i^*\omega \in \Omega^k(U)$ for $\omega \in \Omega^k(M)$ as the restriction of ω . Indeed for $p \in U$, $i^*\omega_p = \omega_p$.

Lemma 1.5. For $F: M \to N$ a smooth map, $\omega \in \Omega^k(N), \nu \in \Omega^l(N)$, we have:

- (1) $F^*(\omega \wedge \nu) = F^*(\omega) \wedge F^*(\nu).$
- (2) In any coordinate chart on N,

$$F^*(\sum_{I}' \omega_I dy^I) = \sum_{I}' (\omega_I \circ F) d(y^{i_1} \circ F) \wedge \dots \wedge d(y^{i_k} \circ F)$$

Exercise 1.6. Prove the above Lemma. Hint: For part (2), combine part (1) with Lemma 1.9 from Lecture notes 8.

Example 1.7. Let $F : \mathbf{R}^2 \to \mathbf{R}^2$ be the map

$$F(r, \theta) = (r\cos(\theta), r\sin(\theta))$$

The pullback of

$$dx \wedge dy \in \Omega^2(F(\mathbf{R}^2))$$

is

$$F^*(dx \wedge dy) = (F^*dx) \wedge F^*(dy) = d(x \circ F) \wedge d(y \circ F)$$

$$= \left(\frac{\partial}{\partial r}r\cos(\theta)dr + \frac{\partial}{\partial\theta}r\cos(\theta)d\theta\right) \wedge \left(\frac{\partial}{\partial r}r\sin(\theta)dr + \frac{\partial}{\partial\theta}r\sin(\theta)d\theta\right)$$
$$= \left(\cos(\theta)dr - r\sin(\theta)d\theta\right) \wedge \left(\sin(\theta)dr + r\cos(\theta)d\theta\right)$$
$$= r\cos^{2}(\theta)(dr \wedge d\theta) + r\sin^{2}(\theta)(dr \wedge d\theta) = rdr \wedge d\theta$$

In general the pullback of an n-form for a smooth map between two n-dimensional manifolds is given by the following formula. (Note that the value n is the same throughout).

Proposition 1.8. Let $F: M \to N$ be a smooth map. Let (U, x^i) be a chart on M and (V, y^i) be a chart on N. Let $u \in C^{\infty}(M)$. Then

$$F^*(udy^1 \wedge \ldots \wedge dy^n) = (u \circ F)(Det(\frac{\partial F^j}{\partial x^i}))dx^1 \wedge \ldots \wedge dx^n \qquad F^j = y^j \circ F$$

Proof. Since $\Lambda^n(T_p^*M), \Lambda^n(T_{F(p)}^*N)$ are 1-dimensional, it suffices to show that the evaluation of both sides of the equality on $(\frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^n})$ are equal. From the Lemma above, the left hand side equals

$$(u \circ F)dF^1 \wedge \dots dF^n \qquad F^i = y^i \circ F^i$$

The result then follows from

$$dF^{1} \wedge \ldots \wedge dF^{n}(\frac{\partial}{\partial x^{1}}, ..., \frac{\partial}{\partial x^{n}}) = Det(dF^{i}(\frac{\partial}{\partial x^{j}})) = Det(\frac{\partial F^{i}}{\partial x^{j}})$$

Note that specialising the above Proposition to the case when M = N, $F = id_M$, $u = 1_M$, and (U, x^i) , (V, y^i) just two different charts on M, we obtain the following change of coordinates formula:

$$dy^1 \wedge \ldots \wedge dy^n = Det(\frac{\partial y^j}{\partial x^i})dx^1 \wedge \ldots \wedge dx^n$$

2. The exterior derivative

The differential of a smooth function in $C^{\infty}(M)$ is a 1-form on M. Since we view $C^{\infty}(M)$ as $\Omega^{0}(M)$, this provides a map

$$d: \Omega^0(M) \to \Omega^1(M)$$

The generalisation of this is the following operation on k-forms which is first defined locally as:

(*)
$$d: \Omega^k(U) \to \Omega^{k+1}(U)$$
 $U \subseteq M, (U, x^i)$ a chart on M

$$\omega = \sum_I' \omega_I dx^I \mapsto d_U \omega = \sum_I' d\omega_I \wedge dx^I$$

Here $d\omega_I \in \Omega^1(U)$ is the differential, viewing $\omega_I \in C^{\infty}(U) = \Omega^0(U)$. Note that this is a local definition. The global definition is provided by the following theorem.

First we state the following Lemma shall be needed in the proof of the theorem.

Lemma 2.1. Let $f, g \in C^{\infty}(M)$. Then $d(fg)_p = f(p)dg_p + g(p)df_p$.

Proof. We choose a chart (U, x^i) centered at p.

$$d(fg)_p = \sum_{1 \le i \le n} \frac{\partial fg}{\partial x^i} \mid_p dx_p^i = f(p) \sum_{1 \le i \le n} \frac{\partial g}{\partial x^i} \mid_p dx_p^i + g(p) \sum_{1 \le i \le n} \frac{\partial f}{\partial x^i} \mid_p dx_p^i$$
$$= f(p)dg_p + g(p)df_p$$

Theorem 2.2. Let M be a smooth n-manifold. For each $k \in \mathbb{N}$, there is a unique map

$$d:\Omega^k(M)\to\Omega^{k+1}(M)$$

satisfying the following:

- (1) If $f \in C^{\infty}(M) = \Omega^{0}(M)$ then df is the usual differential, i.e. df(X) = Xf.
- (2) For $\omega \in \Omega^{k}(M), \nu \in \Omega^{l}(M)$, we have

$$d(\omega \wedge \nu) = d\omega \wedge \nu + (-1)^k \omega \wedge d\nu$$

(3) $d^2 = 0.$

Moreover, for each individual chart, in local coordinates d is given by the formula (*) above. We call d the exterior derivative.

Proof. First we will show that the three conditions hold for the case when (U, x^i) is a global chart on M, i.e. when M is diffeomorphic to \mathbf{R}^n . Part 1 is immediate from the definition. We first show part 2. Let

$$\omega = \sum_{I}^{\prime} \omega_{I} dx^{I} \qquad \nu = \sum_{I}^{\prime} \nu_{I} dx^{I}$$

By multilinearity, it suffices to show that

$$d(\omega_I dx^I \wedge \nu_J dx^J) = (d\omega_I \wedge dx^I) \wedge (\nu_J dx^J) + (-1^k)(\omega_I dx^I) \wedge (d\nu_J \wedge dx^J)$$

We have

$$d(\omega_I dx^I \wedge \nu_J dx^J) = d(\omega_I \nu_J dx^I \wedge dx^J)$$

= $(\nu_J d\omega_I + \omega_I d\nu_J) \wedge dx^I \wedge dx^J$
= $(\nu_J d\omega_I) \wedge dx^I \wedge dx^J + (\omega_I d\nu_J) \wedge dx^I \wedge dx^J$
= $(d\omega_I \wedge dx^I) \wedge (\nu_J dx^J) + (d\nu_J) \wedge (\omega_I dx^I) \wedge dx^J$
= $(d\omega_I \wedge dx^I) \wedge (\nu_J dx^J) + (-1)^k (\omega_I dx^I) \wedge (d\nu_J \wedge dx^J)$

Note that the $(-1)^k$ appears from the anticommutativity law

$$d\psi_1 \wedge d\psi_2 = (-1)^{kl} d\psi_2 \wedge d\psi_1 \qquad \psi_1 \in \Omega^k(M), \psi_2 \in \Omega^l(M)$$

and since $\omega_I dx^I \in \Omega^k(M), d\nu_J \in \Omega^1(M)$.

Now we show part 3. First we show this for a 0-form $\omega \in C^{\infty}(M) = \Omega^{0}(M)$. Then

$$d(df) = d\left(\sum_{1 \le i \le n} \frac{\partial f}{\partial x^i} dx^i\right) = \sum_{1 \le i, j \le n} \frac{\partial f}{\partial x^i \partial x^j} dx^i \wedge dx^j$$
$$= \sum_{1 \le i < j \le n} \left(\frac{\partial f}{\partial x^i \partial x^j} - \frac{\partial f}{\partial x^j \partial x^i}\right) dx^i \wedge dx^j = 0$$

We now prove the general case for $\nu \in \Omega^k(M), \nu = \sum_I' \nu_I dx^I$.

$$d(d\nu) = d(\sum_{I}' d\nu_{I} \wedge dx^{i_{1}} \wedge \dots \wedge dx^{i_{k}})$$
$$= \sum_{I}' d(du) \wedge dx^{i_{1}} \wedge \dots \wedge dx^{i_{k}} + \sum_{I}' \sum_{1 \le j \le k} du \wedge \dots \wedge d(dx^{i_{j}}) \wedge \dots \wedge dx^{i_{k}}$$

We now prove the existence and uniqueness of the exterior derivative for the general case, i.e. for an arbitrary smooth manifold. Let $\omega \in \Omega^k(M)$. We wish to define $d\omega \in \Omega^{k+1}(M)$ by means of local coordinate charts, locally, and then prove the global existence and independence of the choice of coordinates. Let (U, ϕ) be a chart for M. We set

$$d\omega = \phi^* d((\phi^{-1})^* \omega)$$

Given any other chart (V, η) , we obtain

$$\eta^* d((\eta^{-1})^* \omega) = \phi^* (\phi^{-1})^* \eta^* d(\eta^{-1})^* \omega)$$

= $\phi^* (\eta \circ \phi^{-1})^* d(\eta^{-1})^* \omega) = \phi^* d((\eta \circ \phi^{-1})^* \eta^{-1})^* \omega)$
= $\phi^* d((\eta^{-1} \circ \eta \circ \phi^{-1})^* \omega) = \phi^* d((\phi^{-1})^* \omega)$

Therefore, the definition is well defined for $U \cap V$.

Exercise 2.3. Use the existence of smooth bump functions to prove the uniqueness part of the previous theorem.