
LECTURE 10

YASH LODHA

Before we initiate the study of differential k-forms on manifolds, we shall state some basic properties of
alternating tensors and the wedge product. Let V be an n-dimensional vector space. Recall that ⊗kV ∗ is the
nk-dimensional real vector space of covariant k-tensors. Each element of this vector space is a multilinear map
V × ...×V → R, where the domain is a k-fold product. We denote the

(
n
k

)
-dimensional subspace of alternating

k-tensors by ΛkV ∗. Given a multi-index I ⊆ {1, ..., n}, we define

εI ∈ ΛkV ∗ εI =
∑
σ∈Sk

sgn(σ)εiσ(1) ⊗ ...⊗ εiσ(k) I = (i1, ..., ik)

Given ω ∈ ΛkV ∗, ν ∈ ΛlV ∗, we define the wedge product ω ∧ ν ∈ Λk+lV ∗ as the unique multilinear map that
satisfies

εI ∧ εJ = εK K = (i1, ..., ik, j1, ..., jl), I = (i1, ..., ik), J = (j1, ..., jl)

The following are some elementary features of the wedge product.

Proposition 0.1. (1) (Bilinearity) For a, b ∈ R

(aω + bω′) ∧ ν = a(ω ∧ ν) + b(ω′ ∧ ν)

(2) (Associativity)

ω ∧ (ν ∧ ψ) = (ω ∧ ν) ∧ ψ
(3) (Anticommutativity) For ω ∈ ΛkV ∗, ν ∈ ΛlV ∗ we have

ω ∧ ν = (−1)klν ∧ ω

(4) If ε1, ..., εn is a basis for V ∗ and I = (i1, ..., ik) is a multiindex, then

εI = εi1 ∧ εi2 ∧ ... ∧ εik

(5) For any covectors ω1, ..., ωk and vectors v1, ..., vk

ω1 ∧ ... ∧ ωk(v1, ..., vk) = Det(ωj(vi))

1. Differential k-forms on manifolds

Let M be a smooth manifold of dimension n. We shall apply the definitions from the previous lecture to the
case where V = TpM . For each p ∈ M , we obtain the

(
n
k

)
-dimensional vector space of alternating k-tensors,

which is denoted as ΛkT ∗pM . If (x1, ..., xn) are local coordinates on a neighbourhood of p then a basis of

Λk(T ∗pM) is

dxIp = dxi1p ∧ ... ∧ dxikp I = (i1, ..., ik), 1 ≤ i1 < ... < ik ≤ n
Evaluated on a k-tuple of coordinate vectors

∂

∂xj1
|p, ...,

∂

∂xjk
|p J = (j1, ..., jk)

we obtain

dxIp(
∂

∂xj1
|p, ...,

∂

∂xjk
|p) = sgn(σ)

where σ is the permutation such that J = σ(I). The union

Λk(T ∗M) =
⋃
p∈M

Λk(T ∗pM)

is a smooth vector bundle of rank
(
n
k

)
in a natural way as follows.

Given a smooth chart (U, (x1, ..., xn)) around p ∈M , a local trivialisation for ΛkT ∗M is given by⋃
p∈U

ΛkT ∗pM → U ×R(nk) (p,
∑

I an increasing multi-index

CIdx
I
p) 7→ (p, (CI)I an increasing multi-index)
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The maps p→ dxIp provide smooth sections and a smooth local frame for this is

p→ {dxIp | I = (i1, ..., ik), 1 ≤ i1 < ... < ik ≤ n}

Example 1.1. The vector bundle Λ2(T ∗R3) has a global frame given by dx ∧ dy, dy ∧ dz, dx ∧ dz.

Definition 1.2. A smooth section of ΛkT ∗M is called a differential k-form. The set of differential k-forms on M
is denoted as Ωk(M). Note that for k = 0 a differential 0-form is just a smooth function, so Ω0(M) = C∞(M).

We shall fix the following notational convention. Sums over increasing multiindices of the form∑
I⊂{1,...,n},I is an increasing multiindex

CIdx
I
p

shall be denoted as
′∑
I

CIdx
I
p

Definition 1.3. For ω ∈ Ωk(M), we denote ωp = ω(p). In local coordinates for a chart (U, φ), we denote

ωp =

′∑
I

ωI(p)dx
I
p

for some smooth functions ωI : U → R which are called the component functions of ω in the given chart. Note
that the smoothness is equivalent to requiring that for any list of smooth vector fields X1, ..., Xk on U , the
function

U → R p 7→ ωp(X
1
p , ..., X

k
p )

is smooth.

We now generalise the notions of wedge product and pullback to the bundle Ωk(M)

Definition 1.4. (Wedge product) Let ω ∈ Ωk(M), ν ∈ Ωl(M). Then the wedge product ω ∧ ν ∈ Ωk+l(M) is
defined as

(ω ∧ ν)p = ωp ∧ νp
(Pullback) Let F : M → N be a smooth map. Let ω ∈ Ωk(N). Then we define a linear map

F ∗ : Λk(TF (p)N)→ Λk(TpM) F ∗(ω)(X1, ..., Xk) = ω(F∗(X1), ..., F∗(Xk))

for
X1, ..., Xk ∈ Tp(M), ω ∈ Λk(TF (p)N)

Specialising to differential k-forms, we obtain:

F ∗ : Ωk(N)→ Ωk(M) F ∗(ω)p = F ∗(ωF (p))

For a 0-form f ∈ C∞(N), we set F ∗f = f ◦ F .

In the special case where we have an inclusion map i : U → M , we denote i∗ω ∈ Ωk(U) for ω ∈ Ωk(M) as
the restriction of ω. Indeed for p ∈ U , i∗ωp = ωp.

Lemma 1.5. For F : M → N a smooth map, ω ∈ Ωk(N), ν ∈ Ωl(N), we have:

(1) F ∗(ω ∧ ν) = F ∗(ω) ∧ F ∗(ν).
(2) In any coordinate chart on N ,

F ∗(

′∑
I

ωIdy
I) =

′∑
I

(ωI ◦ F )d(yi1 ◦ F ) ∧ ... ∧ d(yik ◦ F )

Exercise 1.6. Prove the above Lemma. Hint: For part (2), combine part (1) with Lemma 1.9 from Lecture
notes 8.

Example 1.7. Let F : R2 → R2 be the map

F (r, θ) = (r cos(θ), r sin(θ))

The pullback of
dx ∧ dy ∈ Ω2(F (R2)

is
F ∗(dx ∧ dy) = (F ∗dx) ∧ F ∗(dy) = d(x ◦ F ) ∧ d(y ◦ F )
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= (
∂

∂r
r cos(θ)dr +

∂

∂θ
r cos(θ)dθ) ∧ (

∂

∂r
r sin(θ)dr +

∂

∂θ
r sin(θ)dθ)

= (cos(θ)dr − r sin(θ)dθ) ∧ (sin(θ)dr + r cos(θ)dθ)

= r cos2(θ)(dr ∧ dθ) + r sin2(θ)(dr ∧ dθ) = rdr ∧ dθ

In general the pullback of an n-form for a smooth map between two n-dimensional manifolds is given by the
following formula. (Note that the value n is the same throughout).

Proposition 1.8. Let F : M → N be a smooth map. Let (U, xi) be a chart on M and (V, yi) be a chart on N .
Let u ∈ C∞(M). Then

F ∗(udy1 ∧ ... ∧ dyn) = (u ◦ F )(Det(
∂F j

∂xi
))dx1 ∧ ... ∧ dxn F j = yj ◦ F

Proof. Since Λn(T ∗pM),Λn(T ∗F (p)N) are 1-dimensional, it suffices to show that the evaluation of both sides of

the equality on ( ∂
∂x1 , ...,

∂
∂xn ) are equal. From the Lemma above, the left hand side equals

(u ◦ F )dF 1 ∧ ...dFn F i = yi ◦ F
The result then follows from

dF 1 ∧ ... ∧ dFn(
∂

∂x1
, ...,

∂

∂xn
) = Det(dF i(

∂

∂xj
)) = Det(

∂F i

∂xj
)

�

Note that specialising the above Proposition to the case when M = N , F = idM , u = 1M , and (U, xi), (V, yi)
just two different charts on M , we obtain the following change of coordinates formula:

dy1 ∧ ... ∧ dyn = Det(
∂yj

∂xi
)dx1 ∧ ... ∧ dxn

2. The exterior derivative

The differential of a smooth function in C∞(M) is a 1-form on M . Since we view C∞(M) as Ω0(M), this
provides a map

d : Ω0(M)→ Ω1(M)

The generalisation of this is the following operation on k-forms which is first defined locally as:

(∗) d : Ωk(U)→ Ωk+1(U) U ⊆M, (U, xi) a chart on M

ω =

′∑
I

ωIdx
I 7→ dUω =

′∑
I

dωI ∧ dxI

Here dωI ∈ Ω1(U) is the differential, viewing ωI ∈ C∞(U) = Ω0(U). Note that this is a local definition. The
global definition is provided by the following theorem.

First we state the following Lemma shall be needed in the proof of the theorem.

Lemma 2.1. Let f, g ∈ C∞(M). Then d(fg)p = f(p)dgp + g(p)dfp.

Proof. We choose a chart (U, xi) centered at p.

d(fg)p =
∑

1≤i≤n

∂fg

∂xi
|p dxip = f(p)

∑
1≤i≤n

∂g

∂xi
|p dxip + g(p)

∑
1≤i≤n

∂f

∂xi
|p dxip

= f(p)dgp + g(p)dfp

�

Theorem 2.2. Let M be a smooth n-manifold. For each k ∈ N, there is a unique map

d : Ωk(M)→ Ωk+1(M)

satisfying the following:

(1) If f ∈ C∞(M) = Ω0(M) then df is the usual differential, i.e. df(X) = Xf .
(2) For ω ∈ Ωk(M), ν ∈ Ωl(M), we have

d(ω ∧ ν) = dω ∧ ν + (−1)kω ∧ dν
(3) d2 = 0.
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Moreover, for each individual chart, in local coordinates d is given by the formula (∗) above. We call d the
exterior derivative.

Proof. First we will show that the three conditions hold for the case when (U, xi) is a global chart on M , i.e.
when M is diffeomorphic to Rn. Part 1 is immediate from the definition. We first show part 2. Let

ω =

′∑
I

ωIdx
I ν =

′∑
I

νIdx
I

By multilinearity, it suffices to show that

d(ωIdx
I ∧ νJdxJ) = (dωI ∧ dxI) ∧ (νJdx

J) + (−1k)(ωIdx
I) ∧ (dνJ ∧ dxJ)

We have
d(ωIdx

I ∧ νJdxJ) = d(ωIνJdx
I ∧ dxJ)

= (νJdωI + ωIdνJ) ∧ dxI ∧ dxJ

= (νJdωI) ∧ dxI ∧ dxJ + (ωIdνJ) ∧ dxI ∧ dxJ

= (dωI ∧ dxI) ∧ (νJdx
J) + (dνJ) ∧ (ωIdx

I) ∧ dxJ

= (dωI ∧ dxI) ∧ (νJdx
J) + (−1)k(ωIdx

I) ∧ (dνJ ∧ dxJ)

Note that the (−1)k appears from the anticommutativity law

dψ1 ∧ dψ2 = (−1)kldψ2 ∧ dψ1 ψ1 ∈ Ωk(M), ψ2 ∈ Ωl(M)

and since ωIdx
I ∈ Ωk(M), dνJ ∈ Ω1(M).

Now we show part 3. First we show this for a 0-form ω ∈ C∞(M) = Ω0(M). Then

d(df) = d(
∑

1≤i≤n

∂f

∂xi
dxi) =

∑
1≤i,j≤n

∂f

∂xi∂xj
dxi ∧ dxj

=
∑

1≤i<j≤n

(
∂f

∂xi∂xj
− ∂f

∂xj∂xi
)dxi ∧ dxj = 0

We now prove the general case for ν ∈ Ωk(M), ν =
∑′
I νIdx

I .

d(dν) = d(

′∑
I

dνI ∧ dxi1 ∧ ... ∧ dxik)

=

′∑
I

d(du) ∧ dxi1 ∧ ... ∧ dxik +

′∑
I

∑
1≤j≤k

du ∧ ... ∧ d(dxij ) ∧ ... ∧ dxik

We now prove the existence and uniqueness of the exterior derivative for the general case, i.e. for an arbitrary
smooth manifold. Let ω ∈ Ωk(M). We wish to define dω ∈ Ωk+1(M) by means of local coordinate charts, locally,
and then prove the global existence and independence of the choice of coordinates. Let (U, φ) be a chart for M .
We set

dω = φ∗d((φ−1)∗ω)

Given any other chart (V, η), we obtain

η∗d((η−1)∗ω) = φ∗(φ−1)∗η∗d(η−1)∗ω)

= φ∗(η ◦ φ−1)∗d(η−1)∗ω) = φ∗d((η ◦ φ−1)∗η−1)∗ω)

= φ∗d((η−1 ◦ η ◦ φ−1)∗ω) = φ∗d((φ−1)∗ω)

Therefore, the definition is well defined for U ∩ V .
�

Exercise 2.3. Use the existence of smooth bump functions to prove the uniqueness part of the previous theorem.


