
HW6: Routing - Solutions
COM-208: Computer Networks

Link-state routing

Consider the network in Figure 1. Execute the link-state (Dijkstra’s) algorithm we saw
in class to compute the least-cost path from each of x, v, and t to all the other routers.

Figure 1: Network topology.

For each router i, C(i) stands for cost to i, and p(i) stands for predecessor
to i.

1. Least-cost path from x to all network nodes.

1

step nodes visited C(t),p(t) C(u),p(u) C(v),p(v) C(w),p(w) C(y),p(y) C(z),p(z)
0 x ∞ ∞ 3,x 6,x 6,x 8,x
1 x,v 7,v 6,v 3,x 6,x 6,x 8,x
2 x,v,u 7,v 6,v 3,x 6,x 6,x 8,x
3 x,v,u,w 7,v 6,v 3,x 6,x 6,x 8,x
4 x,v,u,w,y 7,v 6,v 3,x 6,x 6,x 8,x
5 x,v,u,w,y,t 7,v 6,v 3,x 6,x 6,x 8,x
6 x,v,u,w,y,t,z 7,v 6,v 3,x 6,x 6,x 8,x

2. Least-cost path from v to all network nodes.

step nodes visited C(t),p(t) C(u),p(u) C(w),p(w) C(x),p(x) C(y),p(y) C(z),p(z)
0 v 4,v 3,v 4,v 3,v 8,v ∞
1 v,x 4,v 3,v 4,v 3,v 8,v 11,x
2 v,x,u 4,v 3,v 4,v 3,v 8,v 11,x
3 v,x,u,t 4,v 3,v 4,v 3,v 8,v 11,x
4 v,x,u,t,w 4,v 3,v 4,v 3,v 8,v 11,x
5 v,x,u,t,w,y 4,v 3,v 4,v 3,v 8,v 11,x
6 v,x,u,t,w,y,z 4,v 3,v 4,v 3,v 8,v 11,x

3. Least-cost path from t to all network nodes.

step nodes visited C(u),p(u) C(v),p(v) C(w),p(w) C(x),p(x) C(y),p(y) C(z),p(z)
0 t 2,t 4,t ∞ ∞ 7,t ∞
1 t,u 2,t 4,t 5,u ∞ 7,t ∞
2 t,u,v 2,t 4,t 5,u 7,v 7,t ∞
3 t,u,v,w 2,t 4,t 5,u 7,v 7,t ∞
4 t,u,v,w,x 2,t 4,t 5,u 7,v 7,t 15,x
5 t,u,v,w,x,y 2,t 4,t 5,u 7,v 7,t 15,x
6 t,u,v,w,x,y,z 2,t 4,t 5,u 7,v 7,t 15,x

2

Distance-vector routing

Consider the network in Figure 2. Execute the distance-vector (Bellman-Ford) algorithm
we saw in class and show the information that router z knows after each iteration.

Figure 2: Network topology.

Each node in the topology has its own view of the network, which is
updated independently from other nodes at the end of each step. Therefore,
for every step of the algorithm, you also need to update each of the other
cost tables. Otherwise, your solution may be incorrect.

In our solution we only show the cost table for node z, as required by
the question. The cost table at node z consists of 5 columns (all possible
destinations) and 3 rows (all possible sources—one row for node z and one
row for each neighbor). Each entry of the table denotes the cost between
the associated source-destination nodes.

Initially (at step 0), node z has the following view of the network:

To
u v x y z

From
v ∞ ∞ ∞ ∞ ∞
x ∞ ∞ ∞ ∞ ∞
z ∞ 6 2 ∞ 0

At step 1:

To
u v x y z

From
v 1 0 3 ∞ 6
x ∞ 3 0 3 2
z 7 5 2 5 0

3

At step 2:

To
u v x y z

From
v 1 0 3 3 5
x 4 3 0 3 2
z 6 5 2 5 0

At step 3:

To
u v x y z

From
v 1 0 3 3 5
x 4 3 0 3 2
z 6 5 2 5 0

We see that from step 2 to step 3 the cost tables did not change, indicating
that the algorithm has converged.

Convergence

What is the maximum number of iterations required for the distance-vector (Bellman-
Ford) algorithm that we saw in class to converge (i.e., to finish, assuming no change
occurs in the network graph and link costs)? Justify your answer.

At each iteration, a node exchanges cost tables with its neighbors. Thus,
if you are node A, and your neighbor is B, all of B’s neighbors (which are
all one or two hops from you) will know the least-cost path of one or two
hops to you after one iteration (i.e., after B tells them its cost to you).

Let d be the “diameter” of the network, which is computed as follows:

• Find the least-cost path between each pair of nodes.

• The diameter is equal to the greatest length (in number of links) of
any of those least-cost paths.

Using the reasoning above, after d− 1 iterations, all nodes will know the
least-cost path of cost ≤ d hops to all other nodes. Since any path of cost
> d hops is longer (and costlier) than any of the least-cost paths, the
algorithm converges in at most d− 1 iterations.

4

Poisoned reverse

Consider the network in Figure 3. The routers in the network run the distance-vector
(Bellman-Ford) algorithm we saw in class, with poisoned reverse enabled. Suppose the
algorithm has run for some time and has converged to the correct least-cost paths.

Table 4 contains the reachability information from each router to router A (e.g., from
router D we can reach router A through router C with cost 3).

Now suppose that link A−B goes down.

1

1

1

1

2

A

C

B

E

D

Figure 3: Network topology.

Describe the next 6 steps of the algorithm. For each step, show the reachability information
from each router to router A (cost of the least-cost path and next hop).

See Figures 4 and 5.

To fill in the first table we use the second, auxiliary one: Figure 5 shows the
routing announcements exchanged between routers and the computations
done to update the routing tables. Only the information relevant to routes
to router A is shown. At each step, each router sends to its neighbors the
best route to A known in the previous step, except if the route is via that
neighbor, in which case because of poisoned reverse, ∞ is sent; we mark
such messages with (pr). Then, each router uses all the announcements
it received from the neighbors to update its routing table.

Note that poisoned reverse does not help the algorithm converge.

5

from router B from router C from router D from router E
ro
ut
e
to

ro
ut
er

A step 0 1 via A 2 via B 3 via C 3 via B
step 1 ∞ 2 via B 3 via C 3 via B
step 2 ∞ ∞ 3 via C 4 via D
step 3 6 via E ∞ ∞ 4 via D
step 4 6 via E 7 via B ∞ ∞
step 5 ∞ 7 via B 8 via C ∞
step 6 ∞ ∞ 8 via C 9 via D

Figure 4: Reachability information from each router to router A.

6

router B router C router D router E
st
ep

0

initial table 1 via A 2 via B 3 via C 3 via B

st
ep

1

C → B :∞ (pr) B → C : 1 C → D : 2 B → E : 1
announcements E → B :∞ (pr) D → C :∞ (pr) E → D : 3 D → E : 3

link to A down
table update ∞ 1 + 1 = 2 via B 2 + 1 = 3 via C 1 + 2 = 3 via B

st
ep

2

C → B :∞ (pr) B → C :∞ C → D : 2 B → E :∞
announcements E → B :∞ (pr) D → C :∞ (pr) E → D : 3 D → E : 3

link to A down
table update ∞ ∞ 2 + 1 = 3 via C 3 + 1 = 4 via D

st
ep

3

C → B :∞ B → C :∞ C → D :∞ B → E :∞
announcements E → B : 4 D → C :∞ (pr) E → D :∞ (pr) D → E : 3

link to A down
table update 4 + 2 = 6 via E ∞ ∞ 3 + 1 = 4 via D

st
ep

4

C → B :∞ B → C : 6 C → D :∞ B → E :∞ (pr)
announcements E → B : 4 D → C :∞ E → D :∞ (pr) D → E :∞

link to A down
table update 4 + 2 = 6 via E 6 + 1 = 7 via B ∞ ∞

st
ep

5

C → B :∞ (pr) B → C : 6 C → D : 7 B → E :∞ (pr)
announcements E → B :∞ D → C :∞ E → D :∞ D → E :∞

link to A down
table update ∞ 6 + 1 = 7 via B 7 + 1 = 8 via C ∞

st
ep

6

C → B :∞ (pr) B → C :∞ C → D : 7 B → E :∞
announcements E → B :∞ D → C :∞ (pr) E → D :∞ D → E : 8

link to A down
table update ∞ ∞ 7 + 1 = 8 via C 8 + 1 = 9 via D

Figure 5: Routing announcements exchanged between routers and routing table
updates.

7

Will the algorithm converge to the correct least-cost path values? If yes, in how many
steps?

No, the algorithm does not converge (the algorithm takes an infinite
number of steps to converge to the correct least-cost path values).

Propose a simple way to make the algorithm converge faster.

Potential solutions:

• Routers keep track of the entire route-path, not just the next hop
(e.g., BGP)

• Routers use an upper limit for the cost of a path (e.g., 30). The
algorithm converges slowly, but will eventually converge.

8

Put forwarding and routing together

Consider the network in Figure 6, consisting of:

• End-systems A, B and X, DNS server C, and web server D.

• IP routers R1, R2, R3, and R4.

• The link costs are noted in Figure 6.

• End-systems A, B and X use C as their local DNS server.

End-system A

End-system B

End-system X
DNS Server C

Web Server D
www.epfl.ch

Figure 6: Network topology.

IP prefix/address allocation

Allocate an IP prefix to each IP subnet and an IP address to each network interface that
needs one, following these rules:

• All IP addresses must be allocated from 8.8.8.0/24.

• Each IP subnet must be allocated the smallest possible IP prefix and must have
one broadcast IP address.

• IP router interfaces have IP addresses.

9

Explain how you compute each IP prefix and fill in Table 7.

Subnet number IP prefix Interfaces and IP addresses Broadcast IP address
Example: 1 10.1.1.0/24 x: 10.1.1.0 10.1.1.255

y: 10.1.1.1
z: 10.1.1.2

1 8.8.8.0/29 a : 8.8.8.0 8.8.8.7
b : 8.8.8.1
x : 8.8.8.2
h : 8.8.8.3

2 8.8.8.8/30 c : 8.8.8.8 8.8.8.11
d : 8.8.8.9
s : 8.8.8.10

3 8.8.8.12/30 o : 8.8.8.12 8.8.8.15
p : 8.8.8.13

4 8.8.8.16/30 q : 8.8.8.16 8.8.8.19
r : 8.8.8.17

5 8.8.8.20/30 k : 8.8.8.20 8.8.8.23
l : 8.8.8.21

6 8.8.8.24/30 i : 8.8.8.24 8.8.8.27
j : 8.8.8.25

7 8.8.8.28/30 n : 8.8.8.28 8.8.8.31
m : 8.8.8.29

Figure 7: Allocation of IP prefixes and IP addresses for the network in Figure 6.

10

Forwarding tables

IP routers R1, R2, R3, and R4 participate in a least-cost path routing algorithm. All the
links between the routers are in good condition (no link has failed or is failing), and the
algorithm has converged.

Show the forwarding tables of routers R3 and R2.

a) Router R3:

destination IP prefix output link
8.8.8.0/29 h
8.8.8.8/30 k
8.8.8.12/30 j
8.8.8.16/30 k
8.8.8.20/30 k
8.8.8.24/30 j
8.8.8.28/30 k

b) Router R2:

destination IP prefix output link
8.8.8.0/29 l
8.8.8.8/30 s
8.8.8.12/30 r OR m
8.8.8.16/30 r
8.8.8.20/30 l
8.8.8.24/30 l
8.8.8.28/30 m

11

Routing = populating the forwarding tables

Routers R1, R2, R3, and R4 run the Bellman-Ford algorithm.

Show the final state of the Bellman-Ford tables for all the routers, once the algorithm
has converged.

Answer by filling in the tables below. Here is an example table:

Router X:
from to X Y Z

X 0 5(Y) 10(Y)
Y 5 0 5

10(Y) means that the path from router X to router Z has cost 10 and goes through X’s
neighbor Y .

 1

 2

 R3

R1

 R2

 R4
 2

 2

 2

Figure 8: Network topology used in this question.

Router R1:
from to R1 R2 R3 R4

R1 0 2 (R2) 2 (R3) 2 (R4)
R2 2 0 1 2
R3 2 1 0 3
R4 2 2 3 0

12

Router R2:
from to R1 R2 R3 R4

R2 2 (R1) 0 1 (R3) 2 (R4)
R1 0 2 2 2
R3 2 1 0 ∞ (pr)
R4 2 2 ∞ (pr) 0

Router R3:
from to R1 R2 R3 R4

R3 2 (R1) 1 (R2) 0 3 (R2)
R1 0 2 2 2
R2 2 0 1 2
R4

Router R4:
from to R1 R2 R3 R4

R4 2 (R1) 2 (R2) 3 (R2) 0
R1 0 2 2 2
R2 2 0 1 2
R3

13

Routing in the presence of link failures

The link between routers R1 and R2 fails.

Show the Bellman-Ford tables for all the routers from the moment the link fails and
until the algorithm has re-converged. Write clearly after how many interactions
(neighbor exchanges) the algorithm re-converges.

Answer by filling in the tables below. We have provided tables for two iterations, but the
algorithm may reconverge faster (in which case you just leave some tables empty).

 1

 2
 R3

R1

 R2

 R4
 2

 2 ∞

Figure 9: Network topology after the link failure.

State after the link failure:

Router R1:
from to R1 R2 R3 R4

R1 0 3 (R3) 2 (R3) 2 (R4)
R2

R3 2 1 0 3
R4 2 2 3 0

Router R2:
from to R1 R2 R3 R4

R2 3 (R3) 0 1 (R3) 2 (R4)
R1

R3 2 1 0 ∞ (pr)
R4 2 2 ∞ (pr) 0

14

After the first exchange:

Router R1:
from to R1 R2 R3 R4

R1 0 3 (R3) 2 (R3) 2 (R4)
R2

R3 2 1 0 3
R4 2 2 3 0

Router R2:
from to R1 R2 R3 R4

R2 3 (R3) 0 1 (R3) 2 (R4)
R1

R3 2 1 0 ∞ (pr)
R4 2 2 ∞ (pr) 0

Router R3:
from to R1 R2 R3 R4

R3 2 (R1) 1 (R2) 0 3 (R2)
R1 0 ∞ (pr) 2 2
R2 ∞ (pr) 0 1 2
R4

Router R4:
from to R1 R2 R3 R4

R4 2 (R1) 2 (R2) 3 (R2) 0
R1 0 3 2 2
R2 3 0 1 2
R3

 1

 2

 R3

R1

 R2

 R4
 2

 2 ∞

15

After the second exchange:

Router R1:
from to R1 R2 R3 R4

R1

R2

R3

R4

Router R2:
from to R1 R2 R3 R4

R2

R1

R3

R4

Router R3:
from to R1 R2 R3 R4

R3

R1

R2

R4

Router R4:
from to R1 R2 R3 R4

R4

R1

R2

R3

 1

 2

 R3

R1

 R2

 R4
 2

 2 ∞

16

	Link-state routing
	Distance-vector routing
	Convergence
	Poisoned reverse
	Put forwarding and routing together
	IP prefix/address allocation
	Forwarding tables
	Routing = populating the forwarding tables
	Routing in the presence of link failures

