
Homework 3 
Naming with a Blockchain 

CS-438 - Decentralized Systems Engineering, Fall 2020 

Publish date: Tuesday, November 17, 2020 

Due date: Tuesday, December 8, 2020 @ 23:55 

General Guidelines 
In this homework, you will continue to build more functionalities to Peerster on top of your                
Homework 2 implementation. In this homework, you will add functionalities to achieve            
globally consistent file naming through a blockchain.  
 
We will provide you with the skeleton files that contain the main interfaces to be               
implemented, test framework, and some useful functionality and implementation hints. The           
skeleton files are implemented on top of the skeleton for Homework 2, which means that you                
should be able to merge it with your existing implementation. Specifically, you will receive              
access to a new repository cs438-hw3-student-name which you can add as a new git remote               
in the folder with your existing implementation and pull the updates into your master branch,               
e.g., by running  
 
git remote add hw3 

https://gitlab.epfl.ch/cs438/students/cs438-hw3-student-XYZ.git 

 
git pull --rebase hw3 master 
 
Then you should be able to merge the master branch into the branch with your               
implementation. If you face merge conflicts, you can resolve them either manually, by             
opening the files with the conflicts and removing the unnecessary code pieces, or using an               
automatic tool, such as KDiff3, (it can automatically resolve the conflicts of modifying the              
same file as long as the changes do not touch the same source lines), although you will still                  
likely have to manually resolve some of the conflicts, for which you need to use your own                 
reasoning. 
 
Note that you must use the new hw3 repository (cs438-hw3-student- name) to work on             
this homework, i.e. to make new commits and run tests. 
 
Throughout this development and debugging process, you are welcome to discuss           
challenges and techniques with your fellow students, exchange pointers to relevant           
information or algorithms, debugging tips, etc., provided you each write your own code             
independently. Homeworks are individual per student. 
 
Teaching assistants will be available on Zoom every Friday 15:15-17:00, to discuss with you              
how to architect your implementation. TAs are not going to debug your code, but they can                

https://github.com/KDE/kdiff3


help you ask the right questions just like your software engineer colleagues will do in the                
future. The room INF 1 / the timeslot 13:15 - 15:00 (depending on whether access to the                 
campus is allowed) is available every Monday from 13:15 to 15:00 for you to hack together                
and test your implementations, without TA supervision.  

Fourth Life, a.k.a. Code Review 
Every homework builds on the previous one and requires a full and working implementation              
of the previous homework. Thus, we strongly encourage you to fully implement every             
homework. However, if it so happens that: (1) You were unable to complete a homework               
assignment, or (2) You fully implemented your homework but the poor code design makes it               
hard for you to build on top, or (3) You are unsure why you don’t pass all tests, we offer you                     
an alternative. 
 
After the deadline of Homework 2, you will receive 3 random submissions of your colleagues               
(by getting read-only access to their HW2 repositories on Gitlab). You can choose to build on                
top of any of these 3 assignments for your next homework. If you decide to do so, you                  
need to specify that homework’s identifier, i.e., the Gitlab repo link, in your future              
homework submission on Moodle. Also, if you build on someone else’s code, we strongly              
suggest that you review that colleague’s code on Gitlab as a token of appreciation -- the                
review is, however, not graded.  
 
However, be warned that there is no guarantee regarding the quality of these 3              
randomly assigned submissions - they might be less good than your own            
implementation. Your best strategy, thus, is still to complete the homework yourself.  

Introduction 
Now that we can search for files, we need a human-readable identifier for each file instead of                 
using the metafile hash. We also need this name-to-metahash mapping to be global and              
agreed upon to protect from adversarial peers who serve malformed/malicious files instead            
of the correct ones. A blockchain enables us to reach our goal. 
 
You will enhance Peerster peers with the following: 

1. Claiming the mapping of file names to their metafile hashes 
2. Processing the claimed mappings of other peers 
3. Publishing the accepted mappings to a blockchain 

 
A claim for mapping a file name to a metahash is nothing else than a transaction. So now,                  
whenever you add a new file to your Peerster to be indexed and potentially shared, you                
need to notify other peers in the network about this exciting event by sending out a                
corresponding transaction. The nodes add this transaction to the blockchain if they reach             
consensus on the file name to metahash mapping. 
 



 
Figure 1: The stack layer 

 
Architecturally, the assignment has four layers: 

1. Naming: its responsibility is to expose the mapping between filenames and file            
metahashes to the application. To do this, it relies on the Blockchain. 

2. Blockchain : the blockchain represents an ordered succession of blocks, where each            
block contains its number, a reference to the previous block, the file name and              
metahash that the majority agreed upon. This is essentially a distributed ledger, built             
incrementally and sequentially by consensus. The sequencing is the responsibility of           
the next layer. 

3. Histories through Threshold Logical Clocks : the algorithm we use to advance            
sequentially from one block to another in the blockchain is a variant of Threshold              
Logical Clocks (TLC). TLC is a primitive where the logical clock of a node - here                
representing the block number - advances when the logical clocks of a majority of              
other nodes also advance. When do we advance? When a consensus has been             
reached, which derives from the last layer, Paxos. 

4. Paxos: each block in the blockchain represents the decision of a consensus            
execution, which we implement using a Paxos consensus box (i.e. an instance of             
Paxos, where nodes want to agree on a single value) for achieving consensus on a               
single file name. 
When multiple nodes make simultaneous claims, i.e., several filename-metahash         
associations are competing for the same block number, all these claims are inputs for              
the same consensus box. The output is the claim that the network reached             
consensus on for that particular Paxos consensus box. 

 
We make the simplifying assumption that, throughout the execution, the set of participating             
nodes does not change, except for a minority f of nodes that may fail in a crash-stop                 
manner. In particular, every node knows from the beginning the number of participating             
nodes N (though it may not directly know all participating nodes). We assume that f is strictly                 
smaller than a majority, otherwise consensus is impossible, but we do not give a particular               
value for f beyond this assumption. 
 

Part 1: Paxos (consensus on a single filename) 
 
We’ll use the Paxos consensus algorithm, which should be familiar to you from the lecture.               
For consensus, every node in Peerster plays three roles: (i) Proposer as a client that submits                
transactions; (ii) Acceptor as a node that accepts or rejects transactions, and (iii) Learner as               
a node that learns the outcome of the consensus. As you may know, Paxos might require                



several rounds to complete, but all these rounds are part of the same consensus box and all                 
have the purpose of achieving consensus on a single filename-metahash mapping. 

The simple case 
This section describes the simple case where there is no contention among proposers, i.e., a 
single proposer proposes a value, and there are no failures. The other cases are described 
in the next section. 

 
Figure 2: Sequence of Paxos messages on a simple case between a Proposer and an Acceptor. IDs explained in the next 

section. 

 
When a node shares a file (as per Homework 2), it also sends out a claim for a file name.                    
There are two phases in the Paxos protocol: prepare/promise and propose/accept. 

● First, the proposer node creates a name claim transaction and gossips it with the              
entire network by sending a PREPARE message. Every node receiving the claim            
runs a promiseValidation function to either consent with or reject the claim and,             
if it consents to it, correspondingly sends a PROMISE back to the proposer. The              
proposer waits for a majority ⎣N/2+1⎦ of PROMISE and, if all are promises for its               
own value, starts the second phase (more on other cases below). 

● In the second phase, the proposer node gossips the same claim as a PROPOSE              
message. Every node receiving the PROPOSE runs an acceptValidation         
function and, only if accepted, it sends an ACCEPT to all nodes (because all the               
nodes are learners). 
 

All nodes wait for a majority ⎣N/2+1⎦ of ACCEPT to accept messages for the same value.                
When that happens, the nodes know that the algorithm reached consensus on that value              
and complete the current Paxos execution. 



 

Contention and failure cases  
 
To guarantee safety in case of node failures or contention between proposers, Paxos             
introduces rounds, which help nodes order the proposals and reason on whether to promise              
(phase 1) or accept proposals (phase 2). For safety, rounds need to be unique across               
nodes. Every node maintains a local variable ID , unique across the system. We implement it               
as follows: the ID is initialized with nodeIndex (passed to the gossiper via a CLI flag).                
Throughout the document, incrementing the ID means obtaining the next unique ID value,             
which is simply the old ID plus N, the number of participating nodes. 
In the PREPARE and PROPOSE messages, the proposer adds its ID to each of those two                
messages. Acceptors remember the highest ID  they have seen. 
 
In the promiseValidation function, a node acting as an acceptor responds with a             
PROMISE if both of the following hold: 

● the acceptor has not seen any other PREPARE with a higher or equal ID and  
● the acceptor has not yet accepted any proposal (in the current Paxos run), otherwise,              

it replies with a PROMISE containing the ID and value of the previously accepted              
proposal  

 
In the acceptValidation function, a node acting as an acceptor responds with an accept              
if: 

● the proposal’s ID equals or is greater than1 the highest ID the acceptor has promised               
to any proposer (in the current Paxos run) 

 
The proposer waits for a majority ⎣N/2+1⎦ of PROMISE replies. If the proposer does not               
receive a majority ⎣N/2+1⎦ of positive promises within a timeout of paxosRetry seconds             
(passed through a CLI flag), and its node (in its quality of learner) has not reached                
consensus in the current Paxos run, then the proposer increments its ID and tries again.               
Otherwise, the node starts phase 2, either with its own value or, if any of the replies contain                  
an accept for another value V, the proposer starts phase 2 with its own ID but with the claim                   
V.  
 
Similarly, the proposer node waits for a majority ⎣N/2+1⎦ of replies to the second phase               
within a timeout of paxosRetry seconds. If it observes a majority ⎣N/2+1⎦ of ACCEPT              
messages, it stops. Otherwise, if the node, in its quality of learner, has not reached               
consensus in the current Paxos run, then the proposer increments its ID and tries again the                
whole Paxos procedure starting from phase I with a PREPARE message. 

1 In some pseudocodes for Paxos (including the one in Reference 4 at the end of the handouts), the                   
condition is strictly “equals”. Those pseudocodes might assume reliable in-order delivery of            
messages, which means that a node wouldn’t observe a PROPOSE before its corresponding             
PREPARE. In Peerster we have reliable delivery but for simplicity we don’t enforce ordering, thus the                
condition is “greater or equal”.  



Implementation 
The skeleton contains the basic structures for the implementation. The structure Block            
represents a file name claim, which contains the name, the metahash, the block number and               
hash of the previous blockchain block. For Part 1, the block number should be 0 and the                 
previous hash should be an empty array []byte . When sending a message in any of the                
protocol phases, you add a Block to your message.  
 

The skeleton also defines the message types for all phases of the protocol:             
PaxosPrepare , PaxosPromise , PaxosPropose , PaxosAccept . All these messages       
are sent as rumors and they’re embedded in the rumor using a new optional field, called                
ExtraMessage .  
 
You’ll notice that acceptors send back PROMISE messages embedded in Rumor messages.            
Normally, the PROMISE would be implemented using unicast messages, i.e., private           
messages in Peerster; but, because private messages are unreliable, we chose for simplicity             
to use rumors that have reliability in place thanks to status messages. Essentially, we trade               
off bandwidth (broadcast instead of unicast) for simplicity. 
 
To increment the ID , you can use the UniqueIDGenerator interface, provided in the             
skeleton. 

Gossiper flags 
The gossiper receives the following flags additionally to the ones from previous homeworks: 

● -N  flag for the number of participating nodes 
● -nodeIndex  flag for initializing the node’s ID 
● -paxosRetry  the timeout in seconds to wait for a reply before retrying Paxos 

Client 
We do not provide a GUI for this homework. For the CLI client, please use the homework 3                  
client that adds a file for sharing. This should trigger consensus on file naming. 

Watchers 
The watcher should still work as before: every message sent/received from/to the gossiper             
should be notified to the watchers. We are expecting to see, among others, the Rumor               
messages that contain, in their Extra fields, the Paxos messages. 

Part 2: Blockchain 
All nodes, as learners, maintain a blockchain locally and add the consensus value to their               
blockchain. Eventually, all live nodes learn about the consensus, as there is a guarantee that               
rumors are eventually delivered2.  

2 Remember? You implemented this with Status packets and their associated status-sharing logic! 



However, it would be futile to start executing a new Paxos box until a majority ⎣N/2+1⎦ of                 
nodes have learned about consensus in the current Paxos box. Thus, nodes should start              
executing a new Paxos box, and implicitly be ready for the next block, when a majority                
⎣N/2+1⎦of other nodes also know that consensus has been reached in the current Paxos              
box. To implement this, we’ll use a primitive akin to Threshold Logical Clocks (TLC). 
 
The main idea behind TLC is to progress at the speed of the majority ⎣N/2+1⎦, and in our                  
case, at the speed of a majority ⎣N/2+1⎦of nodes observing the consensus. When a node               
observes consensus, it needs to notify all the other nodes of this event.  
A node observes a consensus when it receives a majority ⎣N/2+1⎦of ACCEPT messages             
(Paxos’s safety ensures that all ACCEPTs are for the same value) in the current Paxos box.                
To notify others, the node broadcasts a TLC message that contains the Block .  
When a node collects a majority ⎣N/2+1⎦ of TLC messages from the current Paxos box,               
indicating that a majority ⎣N/2+1⎦ of nodes observed consensus on a certain value, the node               
knows that it can fast forward the decision of its current Paxos box and proceed to the next                  
block by starting to execute a new Paxos box, even if it has not observed consensus on its                  
own.  
 
If the consensus for a certain block number was reached on a different value than the                
mapping proposed by a node, the node should immediately retry unless its proposed             
mapping clashes with the already accepted one (i.e.., the node wants to claim a filename               
that already exists in the blockchain).  

Implementation 
The implementation is rather straightforward. To keep track of the current block number in              
the blockchain, every node maintains a local variable block_number . When the node            
advances its logical clock and implicitly starts executing a new Paxos box, the node              
increments its block_number variable and resets the ID to nodeIndex. Pay attention that             
IDs and block numbers are different concepts: IDs are within the same Paxos box, whereas               
blocks correspond to different Paxos boxes. 
 
For the first block, the previous hash should be a byte array filled with 32 zeros: 00...0 .                 
We use this value to distinguish it from a hash referring to an empty block.  
 
To broadcast TLC messages, a TLCMessage should be embedded in a Rumor. Specifically,             
it’s embedded using the same new optional field, called ExtraMessage . 
 
You will need to use the exact implementations of hashing provided in the skeleton in order                
to be compatible with other implementations of the blockchain. 

Gossiper flags 
The gossiper receives the same additional flags as Part 1: 

● -N  flag for the number of participating nodes 
● -nodeIndex  flag for initializing the node’s ID 
● -paxosRetry  the timeout in seconds to wait for a reply before retrying Paxos 



Client 
We do not provide a GUI for this homework. For the CLI client, please use the homework 3                  
client that adds a file for sharing. This should trigger consensus on file naming. 

Watchers 
The watcher should still work as before: every message sent/received from/to the gossiper             
should be notified to the watchers. We are expecting to see, among others, the Rumor               
messages that contain, in their Extra fields, the Paxos and TLC messages. 
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