EPFL - Automne 2020	Y. Lodha, G. Buro
Smooth Manifolds	Série
série 11	24 novembre 2020

- **11.1**. Soient (x, y, z) les coordonées standart de \mathbb{R}^3 et (v, w) les coordonnées standart de \mathbb{R}^2 . Soit $\phi(x, y, z) = (x + z, xy)$. On définit $\alpha = e^w dv + v dw$ et $\beta = v dv \wedge dw$ des formes sur \mathbb{R}^2 . Calculer
 - $\alpha \wedge \beta$
 - $\phi^*\alpha$
 - φ*β
 - $\phi^* \alpha \wedge \phi^* \beta$.
- 11.2. Calculer la différentielle exterieure des formes suivantes:
 - Sur $\mathbb{R}^2 \setminus \{0\}$, $\theta = \frac{xdy ydx}{x^2 + y^2}$.
 - Sur \mathbb{R}^3 , $\phi = \cos(x)dy \wedge dz$.
 - Sur \mathbb{R}^3 , $\omega = Adx + Bdy + Cdz$.
- 11.3. Montrer que pour $F: M \to N$ une fonction lisse et $\omega \in \Omega^k(N)$ et $\nu \in \Omega^l(N)$, on a
 - $F^*(\omega \wedge \nu) = F^*\omega \wedge F^*\nu$
 - Dans n'importe quel système de coordonées, on a

$$F^{\star}(\sum_{I}\omega_{I}dy^{I})=\sum_{I}(\omega_{i}\circ F)d(y^{i_{1}}\circ F)\wedge\ldots\wedge d(y^{i_{k}}\circ F).$$

11.4. Soit M une variété différentiable. Montrer que pour tout $\omega \in \Omega^1(M)$ et tous champs de vecteurs lisse $X,Y \in \Gamma(M)$, on a

$$d\omega(X,Y) = X\omega(Y) - Y\omega(X) - \omega([X,Y]).$$