
Homework7: Security - Solutions
COM-208: Computer Networks

With respect to a message m, we define the following security properties:

• Confidentiality holds iff, additionally to the sender of m, only the legitimate
recipient of m gets to learn the content of m.

• Authenticity holds iff the legitimate recipient of m can verify that no third party
assumes the identity of the legitimate sender of m.

• Integrity holds iff the legitimate recipient of m can verify that no third party has
modified m.

Providing authenticity

End-systems Alice and Bob share a secret key K and use the following protocol such
that Alice authenticates herself to Bob:

S1. Alice tells Bob that she has something to say.

S2. Bob sends Alice a nonce R.

S3. Alice sends Bob m, K{R, m}, i.e., her message plus the nonce and message encrypted
with their shared secret key.

Questions:

1. Consider an adversary, Persa, who is sitting on the communication channel between
Alice and Bob. Does this protocol prevent impersonation and enable key reuse?

2. Consider an adversary, Trudy, who is not on the communication channel between
Alice and Bob (she is just another end-system somewhere on the Internet). And
suppose that while Alice is authenticating herself to Bob, Bob uses the same
protocol to authenticate himself to Alice. Can you think how Trudy can take
advantage of this situation and impersonate Alice to Bob?

1



Hint: Consider that, while Alice and Bob authenticate themselves to each other, their
messages can be arbitrarily interleaved. Also, consider that, when Alice authenticates
herself to Bob, it is Bob that chooses the nonce, and vice versa.

1. Yes, the protocol prevents impersonation, because, except for Bob,
only Alice knows K, hence only Alice could have generated K{R, m}.
It also enables key reuse, because Persa cannot infer any information
about K from K{R, m}.

2. Trudy can take advantage as follows:

S1. Trudy pretends to be Alice and tells Bob that she has something
to say.

S2. Bob sends Trudy a nonce R (thinking that he is sending it to
Alice).

S3. At the same time, Bob tells Trudy that he has something to say
(still thinking that he is talking to Alice).

S4. Trudy sends Bob the same nonce R.

S5. Bob sends Trudy m, K{R, m}.

S6. Trudy sends Bob m, K{R, m}.

In summary, by sending Bob the same nonce that he sent her, Trudy
successfully impersonated Alice, i.e., made Bob believe that Alice sent
him message m. Of course, Trudy cannot make Bob believe that Alice
sent him any message, she can only make Bob believe that Alice sent him
the same message m that he sent.

Routing attack

A router’s link-state message includes a list of its directly connected neighbors and the
direct costs to these neighbors. Once a router receives link-state messages from all of the
other routers, it can create a complete map of the network, run its least-cost algorithm,
and configure its forwarding table. One relatively easy attack on the routing algorithm is
for the attacker, after intercepting the routers’ messages, to arbitrarily modify them so
as to distribute bogus link-state messages with incorrect link-state information. How can
this be prevented?

2



Each router can digitally sign the link-state messages it produces. As
long as the routers know the public key of a trusted certificate authority,
each router can verify the digital signature on every link-state message it
receives.

3



Providing all three properties

A and B are end-systems. M is a malicious adversary sitting on the communication
channel between them. A wants to send message m to B. M wants to read and/or modify
message m. A knows this and tries to send message m to B in a way that guarantees
confidentiality, authenticity, and data integrity.

For each of the following cases, identify if confidentiality and/or authenticity and/or data
integrity hold, and justify your answer.

1. A sends: Ks{m}

2. A sends: m, Ks{m}

3. A sends: K+
A {m}

4. A sends: m, K+
B {m}

5. A sends: K−
A {K+

B {m}}

where:

• Ks is a symmetric key, shared only between A and B

• K+
A , K−

A is A’s public and private key, respectively

• K+
B , K−

B is B’s public and private key, respectively

1. Confidentiality holds, because, except for A, only B knows Ks, hence
only B can decrypt Ks{m}. Authenticity and data integrity do not
hold, because M can arbitrarily modify the ciphertext, even if she
does not know the plaintext, and B has no way to detect it.

2. Confidentiality does not hold because A sends message m in the
clear. Authenticity and data integrity hold, because, except for B,
only A knows Ks, hence only A could have generated Ks{m} which,
once decrypted, matches the plaintext m.

3. None of the three properties holds. B does not know K−
A , hence

cannot decrypt K+
A {m}. As a result, B can neither read m nor verify

that A generated it.

4. None of the three properties holds. Confidentiality does not hold
because A sends m in the clear. Authenticity and data integrity do
not hold either, because M (or anyone who knows K+

B ) could have
generated K+

B {m}.

4



5. Confidentiality holds, because only B knows K−
B , hence only B can

decrypt K+
B {m}. Authenticity and data integrity do not hold: B

can use K+
A to decrypt K−

A {K+
B {m}} and obtain K+

B {m}; then use
K−

B to decrypt K+
B {m} and obtain m. However, B does not know

m in advance, so she has no way of verifying that the message was
generated by A and was not tampered with.

With security fixes

End-systems A and B want to secure their communication against an adversary sitting
on the communication channel between them. In each of the following scenarios:

i Identify an existing security problem or weakness and, if applicable, describe an
attack that exploits it.

ii Provide a solution that fixes the weakness (i.e. what should A send instead). Make
sure to provide enough detail for your solution to be understandable. For example,
if you say “A should use a MAC for authentication”, but you do not explain how
the MAC should be computed, then your answer is not complete.

Scenarios:

1. A wants to send one message m to B, ensuring confidentiality and authenticity.
For this, A sends: H (K, m).

2. A wants to send one message m to B, ensuring confidentiality and authenticity.
For this, A sends: K {m}.

3. A wants to send one message m to B, ensuring confidentiality and authenticity. A

knows B’s true public key K+
B . A sends: K+

B

{
m , K+

B {H(m)}
}
.

4. A is sending a number of messages to B. Whenever B receives a message m, B
should be able to verify that A indeed sent a message with the same content as m
at least once. For this, A appends H(K) to each message it sends.

5. A wants to send one message m to B, ensuring authenticity and data integrity. For
this, A cuts m into two pieces, m1 and m2, sends first m1, H(K), then m2, H(K).

6. A and B are friends that want to have a sensitive online conversation, ensuring
confidentiality, authenticity, and data integrity (A receives exactly the sequence
of messages sent by B and vice versa). For this, they use SSL as described in
class: B sends a nonce and a certificate with its public key to A, A sends a nonce
and a master key to B (encrypted with B’s public key), and from the master key

5



and the nonces, they both derive other keys that they use for confidentiality and
authenticity.

Hint: In the example we saw in class, B was an online store. In this question, A
and B are friends having a sensitive conversation.

where:

• H is a cryptographic hash function that is known to everyone.

• K is a symmetric key, shared only between A and B.

• K+
B is B’s public key.

1. • Neither confidentiality nor authenticity hold. Confidentiality
does not hold as B cannot read m, because she cannot invert
the hash function H. Authenticity does not hold either because
B does not know m and cannot invert H so as to verify that
the sender knows the shared secret K.

• A solution that guarantees both confidentiality and authenticity
is: A sends K{m , H (K, m)}.

2. • Authenticity does not hold: A man-in-the-middle can change the
ciphertext K {m}. B will be able to decrypt the message with
the shared key K, but the decrypted message will be different
from the one that was initially sent by A, and B has no way to
detect it.

• A solution that guarantees both confidentiality and authenticity
is: A sends K{m , H (K, m)}.

3. • Authenticity does not hold: Since both the public key K+
B and

the hash function H are publicly available, anyone can generate
the message K+

B

{
m , K+

B {H(m)}
}
.

• A solution that guarantees both confidentiality and authenticity
is: A sends K+

B

{
m , K−

A {H(m)}
}
.

4. • The property described in the formulation does not hold: A
man-in-the-middle can change one or more messages sent by
A. B has no way to be sure that no one tampered with the
messages by only computing H(K), as the latter has nothing to
do with the message itself.

• A solution involves the use of a MAC: A should append H(mi, K)
to every message mi she sends.

6



5. • Authenticity and data integrity of the whole message cannot be
guaranteed: A man-in-the-middle can either change m1 and/or
m2 (as the accompanying H(K) has nothing to do with the
message itself), or reorder the two messages.

• A solution that guarantees both authenticity and data in-
tegrity is to use a MAC and sequence numbers: A sends first
m1, 1, H(K, m1, 1), then m1, 2, H(K, m1, 2).

6. • The problem here arises from the fact that A never sends a
certificate with its public key to B. Therefore, B cannot authen-
ticate A (only A can authenticate B). A man-in-the-middle can
intercept B’s message to A, pretend she is A, and carry out the
entire conversation with B, pretending that she is A.

• A solution is for A to send its public-key certificate to B along
with the nonce and the master key.

7



The role of sequence numbers

End-systems A and B secure their communication with the following protocol:

S1: A sends a “hello” message with a nonce nA and a certificate containing her public
key (K+

A )

S2: B responds with a nonce nB and a certificate containing her public key (K+
B )

S3: After this exchange, to communicate a message mi, A sends: K+
B

{
mi, K−

A {H (nB, mi)}
}

S4: Similarly, to communicate a message mj , B sends: K+
A

{
mj , K−

B {H (nA, mj)}
}
,

where K−
A , K−

B are A’s and B’s private keys and H is a globally known cryptographic
hash function.

Questions:

1. Does this protocol guarantee confidentiality?

2. Assume a man-in-the-middle, who records all the messages sent by A, and, when
the communication between A and B ends, she resends them to B, trying to
impersonate A. Will her attack be successful (or not) and why?

3. Is this protocol vulnerable to any attack(s) other than the ones described above? If
yes, briefly describe the attack(s) and provide the changes that make the protocol
completely secure. If necessary, you can add new steps in the protocol, but do not
modify the existing ones.

1. Yes, the protocol guarantees confidentiality, because of two reasons:

a) All public and private keys are used correctly for the encryption
of the messages: i.e. the public keys of the recipients of the mes-
sages are used for encryptions and the private keys of the senders
are used for providing a digital signature (e.g. K−

B {H (nA, mj)})
of the message.

b) The public keys of both communicating parties have been ex-
changed with certificates, which guarantees that the true and
correct public keys of one are available to the other party.

2. No, the attack cannot be successful because the nonces are correctly
used inside the digital signatures of each message.

8



3. Yes, the protocol is vulnerable to reordering and deletion attacks,
because it uses no sequence numbers: A man-in-the-middle can
reorder K+

B

{
mi, K−

A {H (nB, mi)}
}
or K+

A

{
mj , K−

B {H (nA, mj)}
}
;

or she can delete one of the messages.

One solution is to have both parties exchange a digital signature of
all messages at the end of their communication. I.e., to the above
protocol, we add two more steps:

S1: A sends K+
B

{
K−

A {H (nB, m1, m2, . . .)}
}
to B

S2: B sends K+
A

{
K−

B {H (nA, m1, m2, . . .)}
}
to A

Out-of-order delivery atop TCP

In class, we said that SSL relies on sequence numbers to prevent an attacker from changing
the order of messages (it was the scenario where Alice communicates with an online store,
and we want to prevent an attacker sitting on the communication channel between them
from swapping Alice’s requests to the store). Why do we need this technique? Won’t
TCP ensure that the online store receives Alice’s messages in the correct order?

SSL aims to protect the communication between Alice and the online
store against an adversary who is sitting on the communication channel
between Alice and the online store (hence can see and potentially change
their exchanged packets). TCP cannot guarantee in-order delivery in
the face of such an adversary: The adversary can simply swap two TCP
segments and change their sequence numbers such that the TCP receiver
thinks that the messages are received in order.

9


	Providing authenticity
	Routing attack
	Providing all three properties
	With security fixes
	The role of sequence numbers
	Out-of-order delivery atop TCP

