
Lab9: Secure Networking: SSH and
HTTPS - Solutions
COM-208: Computer Networks

Objectives

• Learning about the security behind ssh, https and making use of them.

Prerequisites

• Lecture 10
• Wireshark

HTTPS

HTTPS is a marked improvement over HTTP when it comes to authentication and
confidentiality. In this Lab, we will examine the following questions about HTTPS:

1. How do HTTP and HTTPS compare with respect to confidentiality? Which of
these two protocols can we trust to transmit sensitive data (e.g. passwords) over
the network?

2. How do web browsers (Firefox, in particular) handle the issue of Certificate Au-
thorities (CA) with respect to HTTPS?

Confidentiality

You are going to test the level of confidentiality that is provided to you by the following
websites:

• A Test Login Page

1

http://testphp.vulnweb.com/login.php

• Yahoo!

You are going to test that for each website, as follows:

• Start by checking whether the web page address begins with “https://” or “http://”.
Note that HTTPS (also called HTTP over TLS, HTTP over SSL, and HTTP
Secure) consists of communication over HTTP, but within a connection encrypted
by Transport Layer Security (TLS) or its predecessor, Secure Sockets Layer (SSL).

• Start a Wireshark capture. Use a filter for capturing only the traffic to/from
the web server: e.g. use an initial filter based on the IP address: “ip.addr ==
X.X.X.X”. You may find the actual IP addresses using “nslookup” or any other
tool (even Wireshark).

• Refresh the login page for the website.

• Submit any username and password for each website. Do NOT provide a valid
password. One of the websites is insecure!

• Examine the Wireshark trace to identify which protocol is used to connect to the
website.

• Examine the trace to see if you can discover the username and password that you
provided in the login form. For this, it is better to use a additional filter for the
traffic concerning the protocol that is used. You may need to add a second filter
to the initial one, by using the AND operator “&&” and examine the content of
the messages that are exchanged. Consider adding “http” for the test login page,
and “ssl” to for the yahoo login page.

Questions

a. Which protocols does your browser use to connect to each website? What are the
confidentiality guarantees of each of the two websites?

We access to the test login page website using simple HTTP which pro-
vides no confidentiality. Thus, we can retrieve the password we entered
in the form (in this case login name: “compnet” and password: “12345”).
See figure below.

2

https://login.yahoo.com/

Figure 1

On the other hand, when we try to access the Yahoo! website, the pass-
word cannot be found. This is because HTTPS encrypts transmitted
data in order to provide confidentiality. This is done here through the
TLSv1.2 protocol. You can filter by SSL to find the packets exchanged
with the Yahoo server:

Client->Server: Client Hello
Server->Client: Server Hello, Certificate, Server Hello Done
Client->Server: Client Key Exchange, Change Cipher Text, En-
crypted Handshake Message
Server->Client: Change Cipher Text, Encrypted Handshake Mes-
sage
Server<->Client: Application Data
Server<->Client: Encrypted Alert

3

Figure 2

b. IMPORTANT: What security advice would you give to a friend/relative who is
struggling with computers about this issue: What information from the browser
could they use to identify an insecure website?

We cannot trust that a password submitted is secure, just because the
webpage does not render the password as it is being typed. One can tell
which protocol is being used by checking whether the web page address
begins with “https://” or “http:”. Most modern browsers (e.g., Firefox)
display a padlock icon before the address, if the protocol used to connect
to the website is HTTPS. If a user clicks on the padlock, they can also
see which CA signed for it.

Certificate Authorities

To identify itself, a web server provides you with a certificate. This certificate is signed by
a Certificate Authority (CA). When a web browser receives a certificate from a website,
it checks whether the CA that has issued the certificate belongs to one of the authorities
that the browser recognizes.

4

In Firefox, recognized authorities can be found in:

Menu (top-right corner of Firefox)/Preferences/Privacy & Security/View
Certificates/Authorities

The response from the web server which carries the certificate is carried on a “Certificate”-
type record.

Questions

a. Use Wireshark to discover which Certificate Authority signed the certificate of Ya-
hoo!.

b. Is this Certificate Authority recognized by your web browser?

In Wireshark, find the message “Certificate” after the message “Server
Hello”. In that message, you can find the certificate issuer, as show in
the screenshot below:

Figure 3

The certificate issuer is DigiCert Inc. This authority is recognized by
Firefox. To see that, click on the padlock item on Firefox placed on the
left-hand side of the address bar. Then, click on the arrow at the top-
left of the opened window. Then, click on “More Information” at the

5

https://mail.yahoo.com
https://mail.yahoo.com

bottom of the newly opened window. Lastly, click on “View Certificate”
in the newly opened window. The final window shows the details of the
authority that is used by yahoo and recognized by Firefox. The final
window is as below.

Figure 4

6

Managing Certificate authorities

As we said, in Firefox, recognized authorities can be found in

Menu (top-right corner of Firefox)/Preferences/Privacy & Security/View Certifi-
cates/Authorities

For demonstration purposes, we are going to examine what would happen if we removed
one of those servers from the list.

• Visit https://www.auth.gr.

• Go to the list of the recognized server from Firefox. Remove every entry of the par-
ent CA organization “Hellenic Academic and Research Institutions Cert.
Authority”. Then, restart Firefox to make changes take effect.

• Visit https://www.auth.gr again. What is the warning message you get?

• Now, visit https://mail.yahoo.com. Why do you not get a similar warning message
for the Yahoo! website?

Firefox displays a warning because the site is certified by an unknown
authority: Aristotle University of Thessaloniki Central CA R5.

Figure 5

Yahoo is certified by DigiCert Inc, known to Firefox, hence there is no

7

https://www.auth.gr
https://www.auth.gr
https://mail.yahoo.com

warning shown.

Figure 6

SSH

The ssh tool is a powerful utility which grants secure access to a target remote machine.
One of the most common use-cases for ssh is to run commands on the target machine
as if we had direct physical access to that machine.

In this Lab, we are going to learn how to achieve the following:

1. Connect to a target machine.

2. Execute a command on a target machine.

3. Run a graphical application on a target machine.

4. Copy files to/from a target machine.

We will also delve a bit deeper on two important security-related aspects of ssh:

8

1. Setting up public key authentication (i.e., “How can I avoid having to type my
password each time I want to connect to a target machine?”)

2. Fingerprints (i.e., “How do I know that the machine I am connecting to is really
the machine I asked ssh to connect to?”)

Setup

(You should be able to run these exercises on just about any GNU/Linux system which
runs an SSH server)

For the purposes of Lab 9, we will be using one of the machines at INF3 as the target
machine. The machines at INF3 can be accessible at icin3pcX.epfl.ch, where X is a value
in {01, 02, 03, …, 64}. You will use your GASPAR accounts to access to those machines.

If you receive an error on connecting to one of the INF3 machines, please
try to connect to some other machine by simply choosing another X value
in the hostname above. The error might be due to overloading the machine
with more ssh connections than the machine can handle.

SSH use cases

Connecting to a target machine

The basic syntax which makes you connect to machine “hostname” using your current
username, using the ssh command is:
$ ssh hostname

In our case, the “hostname” is icin3pcX.epfl.ch, where X is a value in {01, 02, 03, …,
64}.

If you want to log in as a different user, you should provide the following command:
$ ssh username\@hostname

(NOTE: The first time you log in to the server, you will be asked whether you accept
a “fingerprint”. For the moment, you should type “yes” and continue with the Lab. We
will examine fingerprints later in this Lab.)

Exercise

• Connect to one of the INF3 machines using your GASPAR account.

9

• Use Wireshark to capture one ssh session. Which transport protocol is used?
Which port does the ssh server use?

Transport protocol: TCP; port used by server: 22. There are many
packets exchanged even for very few useful data transmitted. We get a
lot of ACKs, to achieve good reaction time.

Figure 7

Executing commands remotely

Once you have connected to a remote machine, this launches a terminal prompt. You
can use this prompt to issue commands to that machine, as if you had direct physical
access to it.

If you are only interested in running a single command and then quitting the SSH session,
you can specify that command directly to the ssh program:
$ ssh username\@hostname command

10

When to use

• The latter way to invoke the ssh command is useful if you want to perform actions
on a remote machine as part of an automated script. This capability becomes even
more powerful if you have set up public key authentication (covered later in this
Lab).

Exercise

• Practice both ways to run a command on one of the machines at INF3 (e.g.,
the date command).

Running graphical applications on a remote machine (X11
forwarding)

You can also use ssh to run graphical applications remotely. In order to do that, you
need to instruct ssh to forward the display server session (X11) to your current machine.
This is commonly referred to as X11 forwarding.

In order to perform X11 forwarding you must provide the right flag to the ssh command
when you instruct it to connect to the target machine. Read the man page of ssh and
find out the appropriate flag for X11 forwarding.

When to use

• You don’t have sufficient rights to install your favorite application on the machine
you are using.

• The machine you are using is too weak to support the application you want to run.
Thus, you are tapping in to the resources of the remote machine.

Exercise

a. Connect to one of the INF3 machines (without X11 forwarding) and try to run a
graphical application (e.g., firefox). What is the error message you get?

11

$ ssh icin3pc07.epfl.ch
...
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted

↪→ by
applicable law.
Last login: Mon Dec 3 14:02:51 2018 from 128.178.158.103
icin3pc07:~$ firefox
Error: no DISPLAY environment variable specified

b. Reconnect to one of the INF3 machines with X11 forwarding enabled this time.
Try to run the same graphical application, again.

$ ssh icin3pc07.epfl.ch
...
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted

↪→ by
applicable law.
Last login: Mon Dec 3 14:02:51 2018 from 128.178.158.103
icin3pc07:~$ firefox

firefox is executed successfully (the window is open). This is because
the -Y option enables X11 forwarding.

Copying files using scp

The scp tool (Secure Copy) to copy files between two different hosts, just like the cp
↪→ command is used to copy files between different directories. In fact, the two tools
are very similar in syntax (e.g. the -r to copy directory subtrees recursively). The basic
syntax for the scp command is:
$ scp file1 file2 ... username@hostname:/path/to/target/folder/

where … means that you can specify multiple files to be copied from your machine (in
the same way that cp can copy multiple files from the source directory).

Exercise

• While connected to your machine, use scp to copy a file from your machine to
one of the INF3 machines. To do that, you can create a few temporary files by
using Linux’s touch command. Moreover, do not forget that your files on an INF3

12

machine is kept only until your session is closed. Hence, copying files from your
machine to one of the INF machines by scp will copy the files, but also delete right
after the command is executed as the scp session completes right after the copying
operation is done.

To see that the files are actually copied, you can open another terminal and ssh to
your target machine. Then, you can do the copy operation from your host machine
to the target machine by using the previous terminal you have opened. Lastly, you
can go back to the terminal you newly opened, and check if the files are actually
copied to the target machine (by ls command).

On the host machine (which is icin3pc03 in this example):
icin3pc03:~$ touch temp1
icin3pc03:~$ touch temp2
icin3pc03:~$ ls
Desktop Downloads temp1 temp2
icin3pc03:~$ scp temp1 temp2 icin3pc07.epfl.ch:~
username@icin3pc07.epfl.ch's password:
temp1 100 0 0.0KB/s 00:00temp2 100 0 0.0KB/s 00:00

On the target machine (which is icin3pc07 in this example):
icin3pc07:~$ cd ~/
icin3pc07:~$ ls
Desktop temp1 temp2

SSH security

Setting up public key authentication

By this time in the Lab, you might have realized that it can get quite tedious, having
to retype your password every time you want to connect to a specific remote machine.
Luckily, there is a way to automate the authentication process (i.e., so that you don’t
have to type your password every time) without giving up on security. You can achieve
that using public key authentication.

The Bigger Picture (and the theory behind it)

Let’s say that your machine is Alice, and that the target machine (in this case, one of the
INF3 machines) is Bob. Your goal is to set Alice and Bob up in a way such that Alice

13

can securely authenticate herself to Bob every time she tries to connect (i.e., perform
an ssh connection). We can use public key authentication to assist us with this task.

Let’s assume that Alice has generated a pair of keys: the private key Ka- and the public
key Ka+. Alice keeps Ka- (the private key) to herself. Alice, then, needs to notify Bob
about Ka+ (the public key). Since both Alice and Bob are machines under our control,
we can find a way to copy the public key from Alice to Bob in some secure way.

Finally, we instruct Bob to allow Alice to authenticate herself using public key authenti-
cation, (instead of checking whether Alice can provide the right password). Since Alice
is the only machine with access to Ka- (the private key), we know that we can trust this
method of authentication.

Note that if Eve manages to steal Ka- (e.g.., by stealing Alice’s machine and reading the
filesystem) she will also be able to authenticate herself as Alice. As an added measure
of precaution, Alice could also encrypt Ka- using a passphrase. Now, when the user
wants to make Alice connect to Bob, they will first have to provide the passphrase to
decrypt Ka-.

From a usability perspective, this throws us back to the initial problem, where the user
has to provide some kind of a password every time Alice tries to connect to Bob. Luckily,
we can configure Alice in such a way, so that we have to decrypt the Ka- only once per
session. For the reminder of the session, Alice can retain the decrypted key in memory
without sacrificing security.

In the rest of this section, we are going to learn how to link security theory to SSH
practice.

Generating a key pair

We use the ssh-keygen command to generate a public-key/private-key pair for SSH. We
recommend that you invoke the command ssh-keygen in the following way:
$ ssh-keygen -t rsa -b 4096

Once you invoke the command, you will presented with a prompt to provide:

• Where to store your key-pair. You should press ENTER, and the key-pair will be
stored in files /home/username/.ssh/id_rsa (private key) and /home/username/.ssh
↪→ /id_rsa.pub (public key).

• A passphrase can be used to encrypt your key. If you specify an empty passphrase,
anybody that can read the private key file (e.g. the root) will be able to authenticate
as you on your target machine. Instead, if you specify a non-empty passphrase,
you need to provide the same passphrase every time you connect. We will examine
a secure way to overcome this restriction.

14

Exercise

• Generate a key pair using ssh-keygen. You should specify a non-empty passphrase.

icin3pc01:~$ ssh-keygen -t rsa Generating public/private rsa
key pair. Enter file in which to save the key (/home/user-
name/.ssh/id_rsa): Enter passphrase (empty for no passphrase): En-
ter same passphrase again: Your identification has been saved in
/home/username/.ssh/id_rsa. Your public key has been saved
in /home/username/.ssh/id_rsa.pub. The key fingerprint is:
f1:5f:2d:bd:ff:0b:f4:59:6b:f0:6e:f5:35:46:9a:7a username@icin3pc01 The
key’s randomart image is: +–[RSA 2048]—-+ | | | | | . | | o + | |
S . o * +| | . . + + + B| | o. . B = | | . E + . o | | . . o =
| +—————–+

Enabling public key authentication at the target

When your machine tries to connect to the target machine, the target machine checks
whether it has enabled public key authentication for your machine. An SSH server per-
forms this check by reading file /home/username/.ssh/authorized_keys (on the server’s
filesystem), if it exists, and checking whether it contains your machine’s public key.

In order to enable the target machine to authenticate your machine using public key
authentication, you should append the contents of your public key file (/home/username
↪→ /.ssh/id_rsa.pub from your machine) to /home/username/.ssh/authorized_keys (on
the target machine).

Exercise

• Copy the contents of id_rsa.pub from your machine to authorized_keys on the
target machine (e.g. by using scp or using a graphical text editor). If the .ssh
folder or the authorized_keys file do not already exist, you will have to create
them.

• Test whether public key authentication works. If you have set everything up prop-
erly by now, you will be asked to provide a passphrase when you connect to the
target machine. Just like in Exercise 2.1.4, the machines in INF3 will delete your
files after the latest live session has expired on the target machine. Hence, keep
a live session to your target machine in another terminal to prevent the autho-
rized_keys file to be deleted.

15

(where the host machine is icin3pc03 and the target machine is
icin3pc07):
icin3pc03:~$ scp .ssh/id_rsa.pub icin3pc07.epfl.ch:~/tmpfile
icin3pc03:~$ ssh icin3pc07.epfl.ch
icin3pc07:~$ mkdir .ssh
icin3pc07:~$ cat tmpfile >> .ssh/authorized_keys
icin3pc07:~$ rm tmpfile
icin3pc07:~$ exit
icin3pc03:~$ ssh icin3pc07.epfl.ch
Enter passphrase for key '/home/sirin/.ssh/id_rsa':

As can be seen, at the last ssh, the passphrase is asked rather than the
password.

Remembering the decrypted private keys

Moving from password based authentication to public key authentication does not pro-
vide much improvement if you have to type the passphrase every time. Fortunately, the
process can be automated with the help of ssh-agent, which remembers the passphrase
and provides it to ssh the next time public key authentication is used. In the INF3
configuration, ssh-agent is enabled by default.

However, if you need to run ssh-agent manually, you can do so with the following
commands:
$ ssh-agent $SHELL
$ ssh-add /home/username/.ssh/id_rsa

Exercise

• Kill the ssh-agent process with the pkill ssh-agent command.

• Restart the ssh-agent process with the commands listed in this section, and give
your passphrase. Then, try to connect to the target machine. If you have con-
figured everything properly, you will manage to connect to the target machine
without having to provide a password. Try to logout and reconnect to the target
machine. You may verify that no password is needed.

icin3pc03:~$ ssh-agent $SHELL
icin3pc03:~$ ssh-add /home/username/.ssh/id_rsa

16

Enter passphrase for /home/username/.ssh/id_rsa:
Identity added: /home/username/.ssh/id_rsa
(/home/username/.ssh/id_rsa)
icin3pc03:~$ ssh icin3pc07.epfl.ch
Last login: Wed Dec 4 19:40:28 2013 from icin3pc03.epfl.ch
icin3pc03:~$ logout
icin3pc03:~$ ssh icin3pc07.epfl.ch
Last login: Wed Dec 4 19:40:28 2013 from icin3pc03.epfl.ch

Fingerprints

So far, we have seen how Alice can authenticate herself to Bob. In order for this to be
secure, Alice should also have some way to verify that she is authenticating herself to
Bob, and not to Persa (somebody that tries to impersonate Bob).

Known hosts

SSH handles this feature in the following way. When Alice tries to connect to Bob, Bob
sends his public host key to Alice. ssh stores host key pairs in directory /etc/ssh.

If this is not the first time Alice connects to Bob, Alice will be able to recall Bob’s public
key from last time; she will only continue with the authentication if what she remembers
about Bob matches what Bob told her about him. For the purposes of SSH, Alice keeps
track of the public key she knows about Bob in file /home/username/.ssh/known_hosts,

Exercise

• Check whether your machine trusts the target machine. You should open file /
↪→ home/username/.ssh/known_hosts on your machine and compare it to the public
host key file on the target machine. (/etc/ssh/ssh_host_ecdsa_key.pub).

where the host machine is icin3pc03 and the target machine is icin3pc07:

The known_hosts file contains a list of machines (and their public keys)
that your machine trusts. A new machine is added to the known_hosts file
the first time your machine connected to it (when you opted to trust the
fingerprint they provided). Let compare the content of .ssh/known_hosts
↪→ and /etc/ssh/ssh_host_ecdsa_key.pub files:

17

On the host machine:
icin3pc03:~$ cat .ssh/known_hosts
|1|iAjQZIQwePQRiK9DVNtJSnN4SqM=|dPx87G3xGFoIxC1mwo75kgapPBQ=
ecdsa-sha2-nistp256
AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBOrYzYnLvCV4PF5znA4I4aD7u7bEzYYkk42y025ygeB3EZUkB19K6mS7rWzOAexwf8YkEtH

↪→ +5OlueBSE+D16L4A=
|1|6voBJfcWINRp3o84ZJjIIm2hTPo=|7pbFJrM9nXo5w+HjsSkwSpGGskw=
ecdsa-sha2-nistp256
AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBOrYzYnLvCV4PF5znA4I4aD7u7bEzYYkk42y025ygeB3EZUkB19K6mS7rWzOAexwf8YkEtH

↪→ +5OlueBSE+D16L4A=

On the target machine:
icin3pc07:~$ cat /etc/ssh/ssh_host_ecdsa_key.pub
ecdsa-sha2-nistp256
AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBOrYzYnLvCV4PF5znA4I4aD7u7bEzYYkk42y025ygeB3EZUkB19K6mS7rWzOAexwf8YkEtH

↪→ +5OlueBSE+D16L4A=
root@sysadmin-OptiPlex-9020

As can be seen, the key, which is
AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBOrYzYnLvCV4PF5znA4I4aD7u7bEzYYkk42y025ygeB3EZUkB19K6mS7rWzOAexwf8YkEtH

↪→ +5OlueBSE+D16L4A=

is the same in both files.

Learning new hosts

If this is the first time that Alice connects to Bob, Alice will have to decide whether she
trusts that the person she is receiving the public key from is indeed Bob. If she decides
she wants to trust Bob, she will store his public key and continue with the authentication.
SSH uses fingerprints to handle this process

A fingerprint is a summary of Bob’s public key. The proper way to verify that the
machine you are connecting to is indeed the machine you think it to be is to obtain
the fingerprint in some other way (e.g. make a phone call to the administrator of that
machine).

Exercise

• Connect to the host machine. Once you connect to the host machine, execute the
following command:

18

$ ssh-keygen -l -f /etc/ssh/ssh_host_ecdsa_key.pub

Save the output to somewhere, and go back to your host machine (either by exiting from
the ssh connection, or opening a new terminal on your local machine).

• Make your machine forget all known hosts it has encountered (i.e., delete file /home
↪→ /username/.ssh/known_hosts on your local machine). Then, reconnect to the
host machine and check whether the fingerprint it advertises to you, matches the
one you obtained in the previous step.

(where icin3pc03 is the host and icin3pc07 is the target machine)

On the target machine:
icin3pc07:~$ ssh-keygen -l -f
/etc/ssh/ssh_host_ecdsa_key.pub
256 SHA256:0cKucqt2PXxwOnNwmTqJzeqJk6mZ/qu2XoU4LL+AeXg
root@sysadmin-OptiPlex-9020 (ECDSA)

On the host machine:
icin3pc03:~$ ssh icin3pc07
The authenticity of host 'icin3pc07 (128.178.158.107)' can't be
established.
ECDSA key fingerprint is
SHA256:0cKucqt2PXxwOnNwmTqJzeqJk6mZ/qu2XoU4LL+AeXg.
Are you sure you want to continue connecting (yes/no)?

As can be seen, the fingerprints, which is SHA256:0
↪→ cKucqt2PXxwOnNwmTqJzeqJk6mZ/qu2XoU4LL+AeXg, are the same.
However, verifying the fingerprint does not offer good security. A
non-naive attacker, mounting a man in the middle attack, can provide
the victim with a fake fingerprint. The proper way to verify a public key
is to get the fingerprint of the machine you want is to obtain it by some
other channel (e.g., call the administrator of that machine).

Food for thought

Now that you know a bit more about the inner workings of the ssh tool, you should be
able to answer the following questions:

19

Questions

1. Compare the security of using public key authentication to using passwords in the
following scenario:

Suppose that you own two laptops (laptop1 and laptop2), which you use to connect
to your server. At some point, laptop1 gets stolen, and the attacker is able to deduce
the password and/or the private key of the laptop (depending on which authentication
message is used) from information stored on the filesystem.

a. If you were using password-based authentication, what steps would you take to
prevent that attacker from accessing your server. Would that change anything in
the way that you are using laptop2 to access the server?

b. How would your response change if you were using public-key authentication to
access your server? Would you have to change anything on laptop2?

If somebody managed to steal the password you were using to access your
server, you should change the password for that account on your server.
This would imply that every time you wanted to connect to your server
from laptop2, you should provide the new password. Some users would
find that annoying.

Instead, if somebody stole laptop1’s private key, all you need to do is
remove a single line in the configuration of your server. You need to
remove the line in the authorized_keys file which makes your server
trust the public key of laptop1. You wouldn’t have to make any changes
to laptop2 to keep accessing your server after that change.

2. Use ssh in the verbose mode (option -v). Describe the message exchange.

Solution (where the host machine is icin3pc03 and the target machine icin3pc07):

sirin@icin3pc03:~$ ssh -v icin3pc07.epfl.ch
OpenSSH_7.2p2 Ubuntu-4ubuntu2.6, OpenSSL 1.0.2g 1 Mar 2016
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 19: Applying options for *
debug1: Connecting to icin3pc07.epfl.ch [128.178.158.107] port

↪→ 22.
debug1: Connection established.
debug1: identity file /home/sirin/.ssh/id_rsa type 1
debug1: key_load_public: No such file or directory
debug1: identity file /home/sirin/.ssh/id_rsa-cert type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/sirin/.ssh/id_dsa type -1

20

debug1: key_load_public: No such file or directory
debug1: identity file /home/sirin/.ssh/id_dsa-cert type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/sirin/.ssh/id_ecdsa type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/sirin/.ssh/id_ecdsa-cert type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/sirin/.ssh/id_ed25519 type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/sirin/.ssh/id_ed25519-cert type -1
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_7.2p2
Ubuntu-4ubuntu2.6

Checking the presence of private keys for public-key authentication.*
debug1: Remote protocol version 2.0, remote software version
OpenSSH_7.2p2 Ubuntu-4ubuntu2.6
debug1: match: OpenSSH_7.2p2 Ubuntu-4ubuntu2.6 pat OpenSSH*

↪→ compat
0x04000000
debug1: Authenticating to icin3pc07.epfl.ch:22 as 'sirin'
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received

Negotiating cryptographic algorithms.
debug1: kex: algorithm: curve25519-sha256@libssh.org
debug1: kex: host key algorithm: ecdsa-sha2-nistp256
debug1: kex: server->client cipher: chacha20-poly1305@openssh.com
MAC: compression: none
debug1: kex: client->server cipher: chacha20-poly1305@openssh.com
MAC: compression: none
debug1: expecting SSH2_MSG_KEX_ECDH_REPLY

Generating a shared secret using the Diffie-Hellman algorithm. The last
message includes the public key of the remote party and a signature.
debug1: Server host key: ecdsa-sha2-nistp256
SHA256:0cKucqt2PXxwOnNwmTqJzeqJk6mZ/qu2XoU4LL+AeXg
debug1: Host 'icin3pc07.epfl.ch' is known and matches the ECDSA

↪→ host
key.
debug1: Found key in /home/sirin/.ssh/known_hosts:1
debug1: rekey after 134217728 blocks

The public key of the remote party is recognized.

21

debug1: SSH2_MSG_NEWKEYS sent
debug1: expecting SSH2_MSG_NEWKEYS
debug1: SSH2_MSG_NEWKEYS received

Form now on, the new keys generated based on the shared secret will be
used.
debug1: rekey after 134217728 blocks
debug1: SSH2_MSG_EXT_INFO received
debug1: kex_input_ext_info: server-sig-algs=
debug1: SSH2_MSG_SERVICE_ACCEPT received

Requesting user authentication.
debug1: Authentications that can continue: publickey,password
debug1: Next authentication method: publickey
debug1: Offering RSA public key: /home/sirin/.ssh/id_rsa
debug1: Server accepts key: pkalg rsa-sha2-512 blen 279
debug1: Authentication succeeded (publickey).
Authenticated to icin3pc07.epfl.ch ([128.178.158.107]:22).

Public-key authentication successful.
debug1: channel 0: new [client-session]
debug1: Requesting no-more-sessions@openssh.com
debug1: Entering interactive session.
debug1: pledge: network
debug1: client_input_global_request: rtype hostkeys-00@openssh.

↪→ com
want_reply 0
debug1: Sending environment.
debug1: Sending env LC_PAPER = de_CH.UTF-8
debug1: Sending env LC_ADDRESS = de_CH.UTF-8
debug1: Sending env LC_MONETARY = de_CH.UTF-8
debug1: Sending env LC_NUMERIC = de_CH.UTF-8
debug1: Sending env LC_TELEPHONE = de_CH.UTF-8
debug1: Sending env LC_IDENTIFICATION = de_CH.UTF-8
debug1: Sending env LANG = en_US.UTF-8
debug1: Sending env LC_MEASUREMENT = de_CH.UTF-8
debug1: Sending env LC_TIME = de_CH.UTF-8
debug1: Sending env LC_NAME = de_CH.UTF-8
Last login: Mon Dec 3 17:51:23 2018 from 128.178.158.103
icin3pc07:~$

22

	Objectives
	Prerequisites
	HTTPS
	Confidentiality
	Questions
	Certificate Authorities
	Questions
	Managing Certificate authorities
	SSH
	Setup
	SSH use cases
	Connecting to a target machine
	Exercise
	Executing commands remotely
	When to use
	Exercise
	Running graphical applications on a remote machine (X11 forwarding)
	When to use
	Exercise
	Copying files using scp
	Exercise
	SSH security
	Setting up public key authentication
	The Bigger Picture (and the theory behind it)
	Generating a key pair
	Exercise
	Enabling public key authentication at the target
	Exercise
	Remembering the decrypted private keys
	Exercise
	Fingerprints
	Known hosts
	Exercise
	Learning new hosts
	Exercise
	Food for thought
	Questions

