ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 24
Principles of Digital Communications
Homework 10
Nov 24, 2020

Problem 1. Show that, if H is the parity-check matrix of a code of length n, then the code has minimum distance d iff every $d-1$ rows of H are linearly independent and some d rows are linearly dependent.

Problem 2. In this problem we will show that there exists a binary linear code which satisfies the Gilbert-Varshamov bound. In order to do so, we will construct a $n \times r$ paritycheck matrix H and we will use Problem ??.
(a) We will choose rows of H one-by-one. Suppose i rows are already chosen. Give a combinatorial upper-bound on the number of distinct linear combinations of these i rows taken $d-2$ or fewer at a time.
(b) Provided this number is strictly less than $2^{r}-1$, can we choose another row different from these linear combinations, and keep the property that any $d-1$ rows of the new $(i+1) \times r$ matrix are linearly independent?
(c) Conclude that there exists a binary linear code of length n, with at most r paritycheck equations and minimum distance at least d, provided

$$
\begin{equation*}
1+\binom{n-1}{1}+\cdots+\binom{n-1}{d-2}<2^{r} \tag{1}
\end{equation*}
$$

(d) Show that there exists a binary linear code with $M=2^{k}$ distinct codewords of length n provided $M \sum_{i=0}^{d-2}\binom{n-1}{i}<2^{n}$.
Problem 3. The weight of a binary sequence of length N is the number of 1 's in the sequence. The Hamming distance between two binary sequences of length N is the weight of their modulo 2 sum. Let \mathbf{x}_{1} be an arbitrary codeword in a linear binary code of block length N and let \mathbf{x}_{0} be the all-zero codeword. Show that for each $n \leq N$, the number of codewords at distance n from \mathbf{x}_{1} is the same as the number of codewords at distance n from \mathbf{x}_{0}.

Problem 4. Let $W:\{0,1\} \longrightarrow \mathcal{Y}$ be a channel where the input is binary and where the output alphabet is \mathcal{Y}. The Bhattacharyya parameter of the channel W is defined as

$$
Z(W)=\sum_{y \in \mathcal{Y}} \sqrt{W(y \mid 0) W(y \mid 1)}
$$

Let X_{1}, X_{2} be two independent random variables uniformly distributed in $\{0,1\}$ and let Y_{1} and Y_{2} be the output of the channel W when the input is X_{1} and X_{2} respectively, i.e., $\mathbb{P}_{Y_{1}, Y_{2} \mid X_{1}, X_{2}}\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)=W\left(y_{1} \mid x_{1}\right) W\left(y_{2} \mid x_{2}\right)$. Define the channels $W^{-}:\{0,1\} \longrightarrow \mathcal{Y}^{2}$ and $W^{+}:\{0,1\} \longrightarrow \mathcal{Y}^{2} \times\{0,1\}$ as follows:

- $W^{-}\left(y_{1}, y_{2} \mid u_{1}\right)=\mathbb{P}\left[Y_{1}=y_{1}, Y_{2}=y_{2} \mid X_{1} \oplus X_{2}=u_{1}\right]$ for every $u_{1} \in\{0,1\}$ and every $y_{1}, y_{2} \in \mathcal{Y}$, where \oplus is the XOR operation.
- $W^{+}\left(y_{1}, y_{2}, u_{1} \mid u_{2}\right)=\mathbb{P}\left[Y_{1}=y_{1}, Y_{2}=y_{2}, X_{1} \oplus X_{2}=u_{1} \mid X_{2}=u_{2}\right]$ for every $u_{1}, u_{2} \in$ $\{0,1\}$ and every $y_{1}, y_{2} \in \mathcal{Y}$.
(a) Show that $W^{-}\left(y_{1}, y_{2} \mid u_{1}\right)=\frac{1}{2} \sum_{u_{2} \in\{0,1\}} W\left(y_{1} \mid u_{1} \oplus u_{2}\right) W\left(y_{2} \mid u_{2}\right)$.
(b) Show that $W^{+}\left(y_{1}, y_{2}, u_{1} \mid u_{2}\right)=\frac{1}{2} W\left(y_{1} \mid u_{1} \oplus u_{2}\right) W\left(y_{2} \mid u_{2}\right)$.
(c) Show that $Z\left(W^{+}\right)=Z(W)^{2}$.

For every $y \in \mathcal{Y}$ define $\alpha(y)=W(y \mid 0), \beta(y)=W(y \mid 1)$ and $\gamma(y)=\sqrt{\alpha(y) \beta(y)}$.
(d) Show that

$$
Z\left(W^{-}\right)=\sum_{y_{1}, y_{2} \in \mathcal{Y}} \frac{1}{2} \sqrt{\left(\alpha\left(y_{1}\right) \alpha\left(y_{2}\right)+\beta\left(y_{1}\right) \beta\left(y_{2}\right)\right)\left(\alpha\left(y_{1}\right) \beta\left(y_{2}\right)+\beta\left(y_{1}\right) \alpha\left(y_{2}\right)\right)} .
$$

(e) Show that for every $x, y, z, t \geq 0$ we have $\sqrt{x+y+z+t} \leq \sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{t}$. Deduce that

$$
\begin{align*}
Z\left(W^{-}\right) \leq & \frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \alpha\left(y_{1}\right) \gamma\left(y_{2}\right)\right)+\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \alpha\left(y_{2}\right) \gamma\left(y_{1}\right)\right) \tag{2}\\
& +\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \beta\left(y_{2}\right) \gamma\left(y_{1}\right)\right)+\frac{1}{2}\left(\sum_{y_{1}, y_{2} \in \mathcal{Y}} \beta\left(y_{1}\right) \gamma\left(y_{2}\right)\right) .
\end{align*}
$$

(f) Show that every sum in (??) is equal to $Z(W)$. Deduce that $Z\left(W^{-}\right) \leq 2 Z(W)$.

