EPFL - Automne 2020	Y. Lodha, G. Buro
Smooth Manifolds	Exercices
Série 7	27 octobre 2020

- 7.1. Soient (U, ϕ) une carte de coordonnées sur M. Dans ce système de coordonnées, un point $q \in U$ s'écrit $(X^1, ..., x^n)$. Comme $E \to M$ est un fibré vectoriel, chaque élément de la fibre au dessus de q s'écrit en coordonnées $(x^1, ..., x^n, y^1(x^1, ..., x^n), ..., y^n(x^1, ..., x^n))$ (les coordonnées dans le fibré dépendent "du point auquel l'espace vectoriel (fibre) est attaché"). Or dans les coordonnées, l'application π est: $\pi(x^1, ..., x^n, y^1, ..., y^n) = (x^1, ..., x^n)$, donc localement π s'écrit comme la submersion triviale. Par le cours et le théorème du rang constant, π est une submersion. De plus, π est trivialement une application surjective.
- **7.2**. Soit $E \to M$ un fibré vectoriel lisse.
 - Soient $\tau, \sigma \in \Gamma(M)$ et $f, g \in \mathcal{C}^{\infty}(M)$, alors $f\sigma + g\tau$ est définie par $(f\sigma + g\tau)(p) = f(p)\sigma(p) + g(p)\tau(p)$, qui appartient à la fibre au dessus de p, car cette dernière est un espace vectoriel. Or par définition, la fibre $E_p = \pi^{-1}(\{p\})$, donc $\pi((f\sigma + g\tau)(p)) = p$, donc $f\sigma + g\tau \in \Gamma(M)$.
 - Par ce qu'on vient de démontrer et la définition de somme et de multiplication par une fonction, $\Gamma(M)$ est trivialement un module sur l'anneau $\mathcal{C}^{\infty}(M)$.
- **7.3**. (Sommes de Whitney)

Soit M une variété lisse et $E' \to M$, $E'' \to M$ deux fibrés vectoriels lisses de rang k' et k'' respectivement. Les fibres au dessus de chaque point sont données par les sommes directes de fibres $E'_p \oplus E''_p$. On définit donc l'espace total par $E' \oplus E'' = \bigsqcup_{p \in M} E'_p \oplus E''_p$, avec la projection triviale $\pi : E' \oplus E'' \to M$. Pour chaque $p \in M$, choisir un voisinage U de p suffisamment petit pour qu'il existe une trivialisation locale (U, ϕ') de E' et une trivialisation locale (U, ϕ'') de E''. Définir $\Phi : \pi^{-1}(U) \to U \times \mathbb{R}^{k'+k''}$ par

$$\pi(v',v'') = (\pi'(v'),\pi'_{\mathbb{R}^{k'}} \circ \phi'(v'),\pi''_{\mathbb{R}^{k''}} \circ \phi''(v'')).$$

Supposer alors qu'on aie une autre paire de trivialisations $(\tilde{U}, \tilde{\phi}')$ et $(\tilde{U}, \tilde{\phi}'')$. Soient $\tau' : U \cap \tilde{U} \to GL_{k''}(\mathbb{R})$ et $\tau'' : U \cap \tilde{U} \to GL_{k''}(\mathbb{R})$ les applications de transitions de cartes. Alors les applications de transition pour $E' \oplus E''$ s'écrivent

$$\tilde{\phi} \circ \phi' - 1(p,(v',v'')) = (p,\tau(p)(v',v''))$$

où $\tau(p) = \tau'(p) \oplus \tau''(p) \in GL_{k'+k''}(\mathbb{R})$ est la matrice

$$\begin{pmatrix} \tau'(p) & 0 \\ 0 & \tau''(p) \end{pmatrix}$$

qui dépend de p de manière lisse, donc en appliquant le lemme des cartes lisses, $E' \oplus E''$ est un fibré vectoriel lisse au dessus de M.

7.4. (exercice 1.5) On a $\nu_1 \circ \nu_2^{-1}$: $\nu_2(U_1 \cap U_2) =] - \frac{1}{2}, 0[\cup]0, \frac{1}{2}[\to \nu_1(U_1 \cap U_2) \text{ est donnée par } \nu_1 \circ \nu_2^{-1}([x]) = x.$

On a $\varphi_2 \circ \varphi_1^{-1}$: $\phi_1(V_1 \cap V_2) =]0, \frac{1}{2} \cup]\frac{1}{2}, 1[\to \varphi_2(V_1 \cap V_2) \text{ est donnée par } \varphi_2 \circ \varphi_1^{-1}((x,t)) = (x,t) \text{ si } x \in]0, \frac{1}{2}[\text{ et } \varphi_2 \circ \varphi_1^{-1}((x,t)) = (1-x,-t) \text{ si } x \in]\frac{1}{2}, 1[.$

- 7.5. (exercice 2.2) La courbe allant de $J=(-\frac{\pi}{2},\frac{3\pi}{2})$ dans \mathbb{R}^2 donnée par $\gamma(t)=(\sin(2t),\cos(t))$ est une lemniscate verticale. Intuitivement, on remarque directement que la lemniscate n'est pas homéomorphe à J. Le point (0,0) est le point qui pose problème.
 - On a que $\gamma(\frac{\pi}{2}) = \gamma(-\frac{\pi}{2}) = \gamma(\frac{3\pi}{2}) = (0,0)$. $-\frac{\pi}{2}$ et $\frac{3\pi}{2}$ ne sont pas dans J, mais dans son adhérence. Comme γ est continue, il faut voir que γ^{-1} n'est pas continue en (0,0). Soit $U =]\frac{\pi}{2} \varepsilon, \frac{\pi}{2} + \varepsilon[$ un ouvert de J contenant $\frac{\pi}{2}$. Alors $\gamma^{-1}(U) = \{(\sin(2t), \cos(t)) | t \in U\}$, qui est un seul des deux arcs de courbe qui se croisent en (0,0), et donc qui n'est pas un ouvert de la lemniscate.