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1. de Rham Cohomology

Definition 1.1. For a smooth n-dimensional manifold M we call the sequence of maps and spaces

0→ Ω0(M)→ Ω1(M)→ ...→ Ωn(M)→ 0

the de Rham complex of M . We say that ω ∈ Ωk(M) is closed if dω = 0. We say that ω ∈ Ωk(M) is exact if
there is a ν ∈ Ωk−1(M) such that ω = dν. (We fix the convention that Ω−1(M) = 0.)

The set of exact k-forms is denoted as Bk(M) and the set of closed k-forms is denoted as Zk(M). It follows
from d2 = 0 that Bk(M) ⊆ Zk(M), and both are linear subspaces of Ωk(M).

We define the vector space Hk
dR(M) = Zk(M)/Bk(M) as the k-th de Rham cohomology group.

Theorem 1.2. The de Rham cohomology groups are topological invariants, i.e. the groups for homeomorphic
manifolds are isomorphic. In particular, the invariants do not depend on the smooth structure, just on the
topology.

Exercise 1.3. Show that H0
dR(M) = Rm where m is the number of connected components of M .

Example 1.4.

H1
dR(R2 \ {0}) ∼= R

Hk
dR(Tn) = R(n

k)

Hk
dR(Sn) = R if k ∈ {0, n} Hk

dR(Sn) = 0 otherwise

2. Integration of differential forms

Let M be a smooth manifold and ω ∈ Ωk(M). We define

supp(ω) = {p ∈M | ωp 6= 0}

We denote by Ωkc (M) as the set of k-forms with compact support. Note that Ω0
c(M) = C∞c (M), where the

latter is the set of compactly supported smooth functions on M ..

Definition 2.1. Let ω ∈ Ωnc (Rn). Then ω = fdx1 ∧ ... ∧ dxn for some f ∈ C∞c (Rn). We define∫
Rn

ω =

∫
Rn

fdx1 ∧ ... ∧ dxn =

∫
Rn

fdx1...dxn

where the last expression is the standard Riemann integral. Note that this is defined since the function is
compactly supported.

2.1. Orientation. In order to generalise the above definition of integration to smooth manifolds, we shall need
the following notion of orientation on smooth manifolds. First we recall the vector space notion.

Definition 2.2. We say that two bases E1, ..., En and E′1, ..., E
′
n for a vector space V have the same orientation

if the transition matrix

M = (ai,j)1≤i,j≤n Ei =
∑

1≤j≤n

(ai,j)Ej

has positive determinant. We define an equivalence relation on the set of all bases of V by declaring two bases
to be equivalent if they have the same orientation. Recall that there are precisely two equivalence classes.
An orientation for V is a choice of equivalence class for V . A basis that belongs to the class of the chosen
orientation is said to have positive orientation and a basis that belongs to the other class is said to have negative
orientation. The equivalence class of the basis E1, ..., En is denoted as [E1, ..., En].

Let U ⊂ Rn be open. A local diffeomorphism F : U → Rn (i.e. a diffeomorphism onto its image) is said to
be orientation preserving, if detDF (x) > 0 for each x ∈ U , where DF (x) is the jacobian matrix at x.
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Definition 2.3. Let M be a smooth manifold and let (U, φ1), (V, φ2) be two charts on it. They are said to be
consistently oriented, if φ2 ◦ φ−11 is orientation preserving.

A smooth atlas on a manifold is said to be oriented, if every pair of charts is consistently oriented. We say
that a smooth manifold is orientable if it admits an oriented atlas. An orientation on M is a maximal oriented
atlas.

Example 2.4. Sn is orientable. Check that the two charts given by the stereographic projection maps are
consistently oriented.

Definition 2.5. Let M be a smooth manifold. A pointwise orientation on M is an assignment of an orientation
Op to TpM for each p ∈M .

For instance, given an orientable manifold (M,A), there is an induced pointwise orientation given as follows.
For any p ∈M we pick a chart (U, φ) ∈ A containing p. Then

Op = [
∂

∂x1
|p, ...,

∂

∂xn
|p]

A pointwise orientation is said to be continuous, if around every point p ∈M there is an open set U and an
n-tuple of smooth vector fields (X1, ..., Xn) such that for all p ∈ U the vectors (X1)p, ..., (Xn)p form a positively
oriented basis, i.e.

Op = [(X1)p, ..., (Xn)p]

Proposition 2.6. A smooth manifold is orientable if and only if it admits a continuous pointwise orientation.

Proposition 2.7. Let M be a smooth n-manifold. Then M is orientable if and only if there is a nowhere
vanishing n-form on M . (Nowhere vanishing means that the value at each point is nonzero.)

Proof. We will show that if given an oriented atlas on M , we can construct a nowhere vanishing n-form on M .
The converse shall be an exercise. Let A = {(Uα, φα) | α ∈ I} be the smooth oriented atlas. Let

ωα = dφ1α ∧ ... ∧ dφnα ∈ Ωn(Uα)

We shall glue these together using partitions of unity. Let {χα | α ∈ I} be a partitions of unit subordinate to
the atlas. We define

ω =
∑
α∈I

χαωα

We claim that ω is nonvanishing. (Note that the sum is locally finite so it is well defined.) Let p ∈ M . Let
β ∈ I be such that χβ(p) > 0 Then

ωp(
∂

∂φ1β
|p, ...,

∂

∂φnβ
|p) =

∑
α∈I

χαωα(
∂

∂φ1β
|p, ...,

∂

∂φnβ
|p) > 0

since for each α ∈ I we have that

(ωα)p(
∂

∂φ1β
|p, ...,

∂

∂φnβ
|p) = Det(D(φα ◦ φ−1β )) > 0

since the charts are consistently oriented.
�

2.2. Back to integration of forms.

Definition 2.8. (Integration of compact forms supported in a single chart) Let M be an oriented smooth
manifold, (U, φ) be a smooth chart in the oriented atlas, and let ω ∈ Ωnc (M). Suppose that ω is supported in
the single chart (U, φ). Then we define ∫

M

ω =

∫
φ(U)

(φ−1)∗ω

We show that the above definition is independent of the choice of chart.

Proposition 2.9. Let M be an oriented smooth manifold, (U, φ), (V, χ) be smooths chart in the oriented atlas
that are consistently oriented, and let ω ∈ Ωnc (M). Suppose that ω is supported in U ∩ V . Then∫

M

ω =

∫
φ(U)

(φ−1)∗ω =

∫
χ(V )

(χ−1)∗ω
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Proof. Let ω = fdx1∧ ...∧dxn in the coordinates provided by (U, φ) and ω = gdy1∧ ...∧dyn in the coordinates
provided by (V, χ). First observe that by Proposition 1.8 from Lecture notes 10 it follows that

gdy1 ∧ ... ∧ dyn

= (φ ◦ χ−1)∗(fdx1 ∧ ... ∧ dxn) = (f ◦ φ ◦ χ−1)|Det(D(φ ◦ χ−1))|dy1 ∧ ... ∧ dyn

= (f ◦ φ ◦ χ−1)Det(D(φ ◦ χ−1))dy1 ∧ ... ∧ dyn since Det(D(φ ◦ χ−1)) > 0

For simplicity of notation, we denote

G = φ ◦ χ−1 G : χ(U ∩ V )→ φ(U ∩ V )

Note that Det(G) > 0 since the charts are consistently oriented.
It follows that ∫

φ(U)

(φ−1)∗ω =

∫
φ(U)

fdx1 ∧ ... ∧ dxn

Using the change of variables formula for Riemann integrals (recall this from calculus) applied to the map G
above we get ∫

φ(U)

fdx1 ∧ ... ∧ dxn =

∫
χ(V )

Det(G)(f ◦G)dy1 ∧ ... ∧ dyn

Again, note that Det(G) > 0 since the charts are consistently oriented so we don’t need the absolute value sign.
Finally, by the above we have∫

χ(V )

Det(G)(f ◦G)dy1 ∧ ... ∧ dyn =

∫
χ(V )

gdy1 ∧ ... ∧ dyn =

∫
χ(V )

(χ−1)∗ω

It follows that ∫
φ(U)

(φ−1)∗ω =

∫
χ(V )

(χ−1)∗ω

�

Definition 2.10. Let (M,A) be a smooth manifold with an oriented atlas A. Let ω ∈ Ωnc (M). We define the
integral

∫
M
ω as follows. Take any finite collection {(Ui, φi)}i∈I of oriented charts such that

supp(ω) ⊂
⋃
i∈I

Ui

Let χi be a partition of unity subordinate to {Ui | i ∈ I}. Then we define∫
M

ω =
∑
i∈I

∫
M

χiω =
∑
i∈I

∫
φi(Ui)

(φ−1i )∗(χiω)

Proposition 2.11. The above definition is independent of the choice of the charts and of the partition of unity
subordinate to them.

Proof. Let {(Vj , ψj)}j∈J be another collection of charts and let {ζj}j∈J be a partition of unity subordinate to
{Vj | j ∈ J}. Then we have∫

M

ω =
∑
j∈J

∫
M

ζjω =
∑
j∈J

∫
M

∑
i∈I

χiζjω =
∑

i∈I,j∈J

∫
M

χiζjω

Note that χiζjω is supported on a single chart, since its support lies in Ui∩Vj . Since the charts are consistently
oriented and by Proposition 2.9,

∫
M
χiζjω can be evaluated using either (Ui, φi) or (Vj , ψj) and the output is

the same. It follows that ∑
i∈I,j∈J

∫
M

χiζjω =
∑
i∈I

∫
M

∑
j∈J

ζjχiω =
∑
i∈I

∫
M

χiω

�


