LECTURE 12

YASH LODHA

1. STRUCTURES ON MANIFOLDS WITH BOUNDARIES

Recall that a manifold with boundary is an n-dimensional Hausdorff, second countable space in which every point has a neighbourhood homeomorphic to an open set of the upper half space

$$\mathbf{H}^n = \{(x_1, ..., x_n) \mid x_n \ge 0\}$$

An open set U of a manifold with boundary, M, together with a homeomorphism ϕ from U to an open subset of \mathbf{H}^n is called a *generalised chart*.

Let

$$\partial \mathbf{H}^n = \{(x_1, ..., x_n) \mid x_n = 0\}$$
 $Int \mathbf{H}^n = (x_1, ..., x_n) \mid x_n > 0\}$

A point in M that is the inverse image of a point in $\partial \mathbf{H}^n$ of a generalised chart is called a boundary point. The set of such points is called ∂M . A point in M that is the inverse image of a point in $Int\mathbf{H}^n$ of a generalised chart is called an *interior point*. The set of such points is called IntM.

Exercise 1.1. Let M be an n-dimensional topological manifold with boundary. Then $\partial M \cap IntM = \emptyset$.

We use the convention that a map $F: A \to \mathbf{R}^n$ on an arbitrary subset $A \subset M$ is smooth if it has a smooth extension to an open set of M containing A.

Definition 1.2. (Smooth manifold with boundary) Let M be an n-dimensional topological manifold with boundary. We define an *atlas* for M as a collection of generalised charts whose domains cover M. Two such generalised charts $(U, \phi), (V, \chi)$ are *smoothly compatible* if

$$\chi \circ \phi^{-1} : \phi(U \cap V) \to \chi(U \cap V)$$

is a diffeomorphism. A *smooth atlas* on M is a collection of generalised charts on M that are pairwise smoothly compatible. A *smooth structure* on M is a maximal smooth atlas. An n-dimensional smooth manifold with boundary is an n-dimensional topological manifold with boundary endowed with a smooth structure.

Note that given a map $F: M \to N$ between manifolds with boundary, we define smoothness just as usual, i.e. we demand that the coordinate representation of the map is smooth with respect to any smooth chart.

Proposition 1.3. Let M be a smooth n-dimensional manifold with boundary. Endowed with the subspace topology, IntM, ∂M can be further endowed with smooth structures with the property that the inclusion maps are smooth.

Proof. We first show this for IntM. For each generalised smooth chart (U, ϕ) for M, we define a smooth chart $(U \cap IntM, \phi \upharpoonright_{IntM})$. The set of such charts clearly covers the space IntM are they are pairwise smoothly compatible.

Now we show this for ∂M . Let (U, ϕ) be a smooth chart for M. Then we define the chart $(\tilde{U}, \tilde{\phi})$ for $\tilde{U} = U \cap \partial M$ where

$$\tilde{\phi}: U \cap \partial M \to \mathbf{R}^{n-1}$$
 $\tilde{\phi} = \pi \circ \phi$ where $\pi: \mathbf{R}^n \to \mathbf{R}^{n-1}$ is the projection map

Let $(U, \phi), (V, \chi)$ be two different charts on M, and let $(\tilde{U}, \tilde{\phi}), (\tilde{V}, \tilde{\chi})$ be the corresponding charts on ∂M . Then we have

$$\tilde{\phi} \circ \tilde{\chi}^{-1} = \pi \circ \phi \circ \chi^{-1} \circ j$$
 where $j: \mathbf{R}^{n-1} \to \mathbf{R}^n$ is the inclusion map

(Check that $(\pi \circ \chi)^{-1} = \chi^{-1} \circ j$.) This is clearly smooth.

For the rest of the course, we shall fix the smooth structure that emerge from the previous proposition as the natural smooth structures on $\partial M, IntM$. So when we refer to either of $\partial M, IntM$, we shall implicitly refer to these smooth structures.

1

2 YASH LODHA

1.1. The tangent space of a manifold with boundary.

Definition 1.4. Let M be a manifold with boundary and $p \in M$. The tangent space at p, denoted by $T_p(M)$, is the vector space of derivations of $C^{\infty}(M)$ at p. That is, linear maps $w: C^{\infty}(M) \to \mathbf{R}$ that satisfy the product rule w(fg) = f(p)w(g) + g(p)w(f).

We define the pushforward $F_*: T_pM \to T_{F(p)}N$ of a smooth map $F: M \to N$ between manifolds with boundary in the same way as before.

Proposition 1.5. Let $i: \mathbf{H}^n \to \mathbf{R}^n$ be the inclusion map. Then

$$i_*: T_p\mathbf{H}^n \to T_p\mathbf{R}^n$$

is an isomorphism with inverse given as follows. For $X \in T_p \mathbf{R}^n$ and $f \in C^{\infty}(\mathbf{H}^n)$, we consider any smooth extension $\tilde{f}: \mathbf{R}^n \to \mathbf{R}$ of f and set

$$Y(f) = X(\tilde{f}) \qquad (i_*)^{-1}(Y) = X$$

It follows that applying $(i_*)^{-1}$ to the coordinate bases $\frac{\partial}{\partial x^1}|_p, \dots \frac{\partial}{\partial x^n}|_p$, we obtain a basis for $T_p(\mathbf{H}^n)$. We abuse notation and also refer to this basis as $\frac{\partial}{\partial x^1}|_p, \dots \frac{\partial}{\partial x^n}|_p$. Now let M be a smooth n-manifold with boundary. Let $p \in M$ and let (U, ϕ) be a smooth generalised chart

such that $p \in U$. The pushforward

$$\phi_*: T_p(M) \to T_{\phi(p)}(\mathbf{H}^n)$$

induces an isomorphism. Hence applying ϕ_*^{-1} to the coordinate vectors $\frac{\partial}{\partial x^1}|_{\phi(p)},...,\frac{\partial}{\partial x^n}|_{\phi(p)}$, we obtain the basis for $T_p(M)$ which we denote as $\frac{\partial}{\partial \phi^1}|_p, ..., \frac{\partial}{\partial \phi^n}|_p$.

To compute the derivation $\frac{\partial}{\partial \phi^i}|_p$ to $f \in C^{\infty}(M)$, we do the following. Let $\widetilde{f \circ \phi^{-1}}$ be a smooth extension of $f \circ \phi^{-1}$ from $\phi(U) \subset \mathbf{H}^n$ to \mathbf{R}^n . Then we obtain

$$\frac{\partial}{\partial \phi^i}\mid_p f = \frac{\partial}{\partial x^i}\mid_{\phi(p)} \widetilde{f \circ \phi^{-1}}$$

Definition 1.6. Let M be a smooth n-manifold with boundary. The definitions of $\Lambda^k T_n^*(M)$ and $\Omega^k T_n^*(M)$ are analogous to the definitions as in the case of manifold without boundary.

1.2. Orientations on smooth manifolds with boundary.

Definition 1.7. Let M be a smooth n-manifold with boundary. Two generalised charts $(U, \phi), (V, \chi)$ are said to be consistently oriented if the transition function $\phi \circ \chi^{-1}$ is orientation preserving. An orientation on a smooth manifold with boundary is an atlas consisting of charts which are pairwise oriented. M is called *orientable* if it admits an orientation.

Equivalently, M is orientable if and only if it admits a continuous pointwise orientation, and if and only if it admits a nowhere vanishing n-form.

Note that if IntM is oriented, then we can define a consistently oriented atlas on M by taking all the generalised charts ϕ such that $\phi \upharpoonright IntM$ is positively oriented. Therefore, an orientation on IntM induces an orientation on M.

1.3. Integration on a manifold with boundary. Let $fdx^1 \wedge ... \wedge dx^n$ be an *n*-form on \mathbf{H}^n . Then we define

$$\int_{\mathbf{H}^n} f dx^1 \wedge \dots \wedge dx^n = \int_{\mathbf{H}^n} f dx^1 \dots dx^n$$

Let M be an n-manifold with boundary. Given an n-form $\omega \in \Omega^n(M)$ that is supported in a chart (U, ϕ) , we define

$$\int_{M} \omega = \int_{\phi(U)} (\phi^{-1})^* \omega$$

The integral of a compactly supported n-form is define using partitions of unity, just like the case of a manifold without boundary.

1.4. The induced orientation on the boundary. Given an oriented atlas \mathcal{A} on an *n*-manifold (possibly with a boundary), we define the oriented atlas $-\mathcal{A}$ as follows. For each chart (U, ϕ) in \mathcal{A} , we define a chart $(U, \phi') \in -\mathcal{A}$ where $\phi' \circ \phi^{-1}$ is orientation reversing. Note that $-\mathcal{A}$ is also an orientation (prove this!).

Let (M, \mathcal{A}) be a smooth oriented *n*-manifold with boundary. Let \tilde{A} be the induced smooth atlas on ∂M . Recall that this is given as follows: Let (U, ϕ) be a smooth chart for M. Then we define the chart $(\tilde{U}, \tilde{\phi}) \in \tilde{A}$ for $\tilde{U} = U \cap \partial M$ where

$$\tilde{\phi}: U \cap \partial M \to \mathbf{R}^{n-1}$$
 $\tilde{\phi} = \pi \circ \phi$ where $\pi: \mathbf{R}^n \to \mathbf{R}^{n-1}$ is the projection map

Definition 1.8. If n is even, then we endow ∂M with the orientation $\tilde{\mathcal{A}}$. If n is odd, then we endow ∂M with the orientation $-\tilde{\mathcal{A}}$.

The above definition/convention will be justified in the proof of the Stokes theorem!

Remark 1.9. The above definition has the following feature. If $(X_1,...,X_n)$ is a positively oriented bases for $T_p(\partial M), p \in \partial M$, then

$$(N, X_1, ..., X_n)$$

is a positively oriented basis for $T_p(M)$, where N is the "outward pointing" vector at $p \in M$. Outward pointing means that in any generalised chart (U, ϕ) containing p, the vector

$$N = \sum_{1 \le i \le n} c^i \frac{\partial}{\partial \phi^i} \mid_p$$

satisfies that $c^n < 0$. Think of it as "outward pointing" from \mathbf{H}^n to its complement in \mathbf{R}^n .

Also, note that in the special case of a 1-dimensional manifold with boundary (for example, [0,1]), we assign numerical quantities +1 or -1 to each of the boundary points as the "induced orientation". In the standard "left to right" orientation on [0,1], the point 1 is assigned +1 and the point 0 is assigned -1.

2. The Stokes Theorem

Theorem 2.1. Let (M, \mathcal{A}) be an oriented n-manifold with boundary. (Here \mathcal{A} is the orientation on M. As usual, we let $\tilde{\mathcal{A}}$ be the induced orientation on ∂M .) Let $\omega \in \Omega_c^{n-1}(M)$, and given the inclusion map $i: \partial M \to M$, we denote $i^*\omega \in \Omega_c^{n-1}(\partial M)$ as ω . Then

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Remark 2.2. (Fundamental theorem of calculus) The stokes theorem generalised the fundamental theorem of calculus in the following manner. Given

$$\omega = f \in \Omega^0([a,b]) = C^{\infty}([a,b])$$

we have that

$$\int_{[a,b]} d\omega = \int_{[a,b]} f'(x) dx = \int_{\partial [a,b]} f = f(b) - f(a)$$

Note that here we have the standard "left to right" orientation on [0,1], and in the induced orientation on the boundary, the point 1 is assigned +1 and the point 0 is assigned -1.

Remark 2.3. (Fundamental theorem of line integrals) Let M be a smooth manifold and let $\gamma:[a,b]\to M$ be a smooth embedding, so that $S=\gamma([a,b])$ is an embedded 1-submanifold with boundary in M. If we give S the orientation such that γ is orientation preserving, then for any smooth function $f\in C^\infty(M)$, the Stokes theorem says that

$$\int_{\gamma} df = \int_{[a,b]} \gamma^* df = \int_{S} df = \int_{\partial S} f = f(\gamma(b)) - f(\gamma(a))$$

Here are a few important corollaries of the theorem.

Corollary 2.4. (Integrals of closed forms over boundaries) Suppose that M is a compact oriented smooth n-manifold with boundary. If $\omega \in \Omega^n(M)$ is a closed form, then

$$\int_{\partial M} \omega = \int_{M} d\omega = 0$$

Corollary 2.5. (Integrals of exact forms) If M is a compact oriented smooth manifold without boundary, then the integral of every exact form over M is zero:

$$\int_{M} d\omega = \int_{\partial M} \omega = 0$$

4 YASH LODHA

Corollary 2.6. (Submanifolds) Let M be a smooth n-manifold (with or without boundary). Let $S \subseteq M$ be an oriented compact smooth k-submanifold (without boundary). Let $\omega \in \Omega_c^k(M)$ be closed. If $\int_S \omega \neq 0$, then the following holds:

- (1) ω is not exact on M.
- (2) S is not the boundary of an oriented compact smooth submanifold with boundary in M.

Definition 2.7. In a manifold M, a regular compact domain is a set $D \subset M$, which is compact and has the property that for each $p \in \partial D$, there is a chart (U, ϕ) of M containing p such that

$$\phi(U \cap \partial D) \subset \partial \mathbf{H}^n \qquad \phi(U \cap D) \subset \mathbf{H}^n$$

Example 2.8. The closed 1-form

$$\omega = \frac{(xdy - ydx)}{x^2 + y^2}$$

has a nonzero integral over S^1 . Moreover, it is not exact on $\mathbb{R}^2 \setminus \{0\}$. The preceding corollary also tells us that S^1 is not the boundary of a compact regular domain in $\mathbb{R}^2 \setminus \{0\}$.

Theorem 2.9. (Green's theorem) Suppose that D is a compact regular domain in \mathbb{R}^2 , and P,Q are smooth real valued functions on D. Then

$$\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{\partial D} P dx - Q dy$$

Proof. We apply the Stokes theorem to the form

$$Pdx + Qdy \in \Omega^1(D)$$