Three levels of hierarchy

- IP subnet
* L2 forwarding
* L2 learning
- Autonomous System (AS)
* IP (L3) forwarding
* intra-domain routing
- Internet
* IP (L3) forwarding
* inter-domain routing (BGP)

2 x two-level hierarchies

- IP subnet vs. Internet
* L2 vs. IP forwarding
* different forwarding processes, different layers => different packet headers
- Autonomous System (AS) vs. Internet
* intra-domain vs. inter-domain routing
* different routing protocols
* same forwarding process (IP), same layer

Question: Allocate IP addresses

- Given network topology and IP prefix, allocate IP addresses using smallest possible range per IP subnet
- Final 2018, Problem 2, Question 1

Step 1: Draw the IP subnets

- IP subnet $=$ contiguous network area that has routers only at its boundaries
- Each interface of an IP router belongs to a different IP subnet

Step 2: Count IPs per subnet

- One IP address per end-system interface
- One IP address per router interface
* not needed for IP forwarding, but needed for other practical reasons
- No IP addresses for link-layer switches
* in reality they have IP addresses, but ignore to simplify exam

Step 2: Count IPs per subnet

- One broadcast IP address
* the very last IP address covered by the IP prefix
* addresses all entities with an IP address in the local subnet
- No network IP address
* the very first IP address covered by the IP prefix
* meant to have special meaning, but not typically used

Step 3: Allocate IP prefixes

- One approach: start from the largest IP subnet, allocate consecutive prefixes
- Whatever approach you choose: IP prefixes allocated to different IP subnets must not overlap

Step 3: Allocate IP prefixes

- 1st IP subnet: 100.0.0.0/22
* 1002 IPs $=>$ we need 10 bits (22-bit mask)
* available IP prefix: 100.0.0.0/16
* $0110010000000000 \times x x x x x x x \times x \times x x x x x$
* $0110010000000000000000 x x$ xxxxxxxx
* allocated IP prefix: 100.0.0.0/22
* we get 1024 addresses
* we are "wasting" some address space because the number of addresses is not a power of 2

Step 3: Allocate IP prefixes

- 2nd IP subnet: 100.0.4.0/25
* 102 IPs $=>$ we need 7 bits (25-bit mask)
* last allocated IP prefix: 100.0.0.0/22
* $0110010000000000000000 \times x \times x \times x \times x \times x$
* $0110010000000000000001 \times x \times x \times x \times x \times x$
* $0110010000000000000001000 \times x \times x \times x x$
* 100.0.4.0/25

Step 3: Allocate IP prefixes

- 3rd IP subnet: 100.0.4.128/26
* 52 IPs => we need 6 bits (26-bit mask)
* last allocated IP prefix: 100.0.4.0/25
* $0110010000000000000001000 \times x \times x \times x x$
* $0110010000000000000001001 \times x \times x \times x \times$
* $01100100000000000000010010 \times x \times x \times x$
* 100.0.4.128/25

Step 3: Allocate IP prefixes

- 4th IP subnet: 100.0.4.192/30
* 3 IPs \Rightarrow we need 2 bits (30-bit mask)
* last allocated IP prefix: 100.0.4.128/26
* $01100100000000000000010010 \times x x x x x$
* $01100100000000000000010011 \times x x x x x$
* $011001000000000000000100110000 x x$
* 100.0.4.192/30

Step 3: Allocate IP prefixes

- 5th IP subnet: 100.0.4.196/30
* 3 IPs \Rightarrow we need 2 bits (30-bit mask)
* last allocated IP prefix: 100.0.4.192/30
* 011001000000000000000100 110000xx
* $011001000000000000000100110001 x x$
* 100.0.4.196/30

Step 3: Allocate IP prefixes

- 6th IP subnet: 100.0.4.200/30
* 3 IPs $=>$ we need 2 bits (30-bit mask)
* last allocated IP prefix: 100.0.4.196/30
* $011001000000000000000100110001 \times x$
* $011001000000000000000100110010 x x$
* 100.0.4.200/30

Step 4: Allocate IP addresses

- 1st IP subnet: 1002 addresses from 100.0.0.0/22
* $0110010000000000000000 x x$ xxxxxxxx
* 01100100000000000000001111111111
* broadcast IP address: 100.0.3.255
* 100.0.0.0-100.0.3.232

Step 4: Allocate IP addresses

- 2nd IP subnet: 102 addresses from 100.0.4.0/25
* $0110010000000000000001000 x x x x x x x$
* 01100100000000000000010001111111
* broadcast IP address: 100.0.4.127
* 100.0.4.0-100.0.4.100

Question: Show router tables

- Given network topology and allocated IPs, show router forwarding tables, assuming least-cost path routing protocol that has converged
- Final 2018, Problem 2, Question 2

100.0.4.0/25

100.0.0.0/22

$$
\begin{array}{rr}
100.0 .0 .0 / 22 & f \\
100.0 .4 .0 / 25 & \mathrm{~g} \\
100.0 .4 .128 / 26 & \mathrm{~h} \\
100.0 .4 \cdot 192 / 30 & \mathrm{~g} \\
100.0 .4 \cdot 198 / 30 & \mathrm{~h} \\
100.0 .4 .200 / 30 & \mathrm{i}
\end{array}
$$

Question: Show packets

- Given a communication scenario, show all the packets transmitted by end-systems and routers
- Final 2018, Problem 2, Question 3

DNS request from A to server
DNS response from server to A
HTTP GET request for base file from A to server HTTP GET response from server to A
HTTP GET request for image file from A to server
HTTP GET response from server to A

DNS request from A to server
ARP request, MAC: A-broadcas \dagger
ARP response, MAC: R1-A
DNS request, MAC: A-R1, IP: A-DNS
ARP request, MAC: R1-broadcast
ARP response, MAC: DNS—R1
DNS request, MAC: R1-DNS, IP: A-DNS

DNS response from server to A
DNS response, MAC: DNS—R1, IP: DNS—A DNS response, MAC: R1-A, IP: DNS-A

HTTP GET request from A to server
TCP SYN, MAC: A-R1, IP: A-DNS
TCP SYN, MAC: R1-DNS, IP: A-DNS
TCP SYN ACK, MAC: DNS-R1, IP: DNS—A
TCP SYN ACK, MAC: R1-A, IP: DNS-A
HTTP GET request, MAC: A-R1, IP: A-DNS
HTTP GET request, MAC: R1-DNS, IP: A-DNS

HTTP GET response from server to A
HTTP GET response, MAC: DNS-R1, IP: DNS-A HTTP GET response, MAC: R1-A, IP: DNS-A

Question: Show switch tables

- Given a communication scenario, show switch forwarding tables
- Final 2018, Problem 2, Question 4

Question: Show filtering table

- Show filtering table that allows a given communication pattern
- Final 2018, Problem 2, Question 5

Deny all traffic
Except B-server HTTP traffic
Except B-server DNS traffic

Question: Show filtering table

- List filtering table fields
* action, TCP/UDP, src IP, dst IP, src port, dst port
- List entries that achieve given pattern
* allow TCP B-prefix server-IP any 80
* allow TCP server-IP B-prefix 80 any
* allow UDP B-prefix server-IP any 53
* allow UDP server-IP B-prefix 53 any
* deny any any any any any any

TCP elements

- Connection setup and teardown
- Connection hijacking
- Connection setup (SYN) flooding
- Flow control
- Congestion control

TCP elements

- Connection setup and teardown
- Connection hijacking
- Connection setup (SYN) flooding
- Flow control
- Congestion control

Flow control

- Goal: not overwhelm the receiver
* not send at a rate that the receiver cannot handle
- How: "receiver window"
* spare room in receiver's rx buffer * receiver communicates it to sender as TCP header field

Congestion control

- Goal: not overwhelm the network
* not send at a rate that the would create network congestion
- How: "congestion window"
* number of unacknowledged bytes that the sender can transmit without creating congestion
* sender estimates it on its own

Self-clocking

- Sender guesses the "right" congestion window based on the ACKs
- $\mathrm{ACK}=$ no congestion, increase window
- No ACK = congestion, decrease window

Alice's computer

Bob's computer

Alice's computer

Bob's computer

Basic algorithm (Tahoe)

- Set window to 1 MSS, increase exponentially
- On timeout, reset window to 1 MSS, set ssthresh to last window/2
- On reaching ssthresh, transition to linear increase

Alice's computer

Bob's computer

Basic algorithm (Reno)

- Set window to 1 MSS, increase exponentially
- On timeout, reset window to 1 MSS, set ssthresh to last window/2
- On reaching ssthresh or 3 duplicate ACKs, transition to linear increase

Two retransmission triggers

- Timeout $=>$ retransmission of oldest unacknowledged segment
- 3 duplicate $\mathrm{ACKs}=>$ fast retransmit of oldest unacknowledged segment
* avoid unnecessary wait for timeout
* 1 duplicate ACK not enough <= network may have reordered a data segment or duplicated an ACK

TCP terminology

- Exponential increase = slow start
* on timeout, reset window to 1 MSS
* set ssthresh to last window/2
- Linear increase = congestion avoidance
* on window reaching ssthresh
* on receiving 3 duplicate ACKs

Question: Show TCP diagram

- Given Alice-Bob communication scenario, show all TCP events between them
- Final 2018, Problem 4, Question 1

Alice sends 12 bytes of data

Bob's 3,5,6,8,9,10th segment los \dagger

Alice sends 12 bytes of data

Bob's 3,5,6,8,9,10th segment lost

Alice sends 12 bytes of data
Bob's 3,5,6,8,9,10th segment los \dagger

Alice sends 12 bytes of data Bob's 3,5,6,8,9,10th segment los \dagger

Alice sends 12 bytes of data Bob's 3,5,6,8,9,10th segment los \dagger

Alice sends 12 bytes of data
Bob's 3,5,6,8,9,10th segment lost

Exam material

- All lectures, homework, labs from semester start
- Emphasis on material after midterm
- Lab-related questions: $<=20 \%$ of the points

Priorities

- Past final exams
* solve them from start to end without looking at the solutions
- Lecture slides + homework
- Labs

