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ABSTRACT
We introduce a model for electronic election schemes that
involves a more powerful adversary than previous work. In
particular, we allow the adversary to demand of coerced
voters that they vote in a particular manner, abstain from
voting, or even disclose their secret keys. We define a scheme
to be coercion-resistant if it is infeasible for the adversary to
determine if a coerced voter complies with the demands.

A first contribution of this paper is to describe and char-
acterize a new and strengthened adversary for coercion in
elections. (In doing so, we additionally present what we be-
lieve to be the first formal security definitions for electronic
elections of any type.) A second contribution is to demon-
strate a protocol that is secure against this adversary. While
it is clear that a strengthening of attack models is of the-
oretical relevance, it is important to note that our results
lie close to practicality. This is true both in that we model
real-life threats (such as vote-buying and vote-canceling),
and in that our proposed protocol combines a fair degree
of efficiency with an unusual lack of structural complexity.
Furthermore, previous schemes have required use of an un-
tappable channel throughout. Ours only carries the much
more practical requirement of an anonymous channel dur-
ing the casting of ballots, and an untappable channel during
registration (potentially using postal mail).

This extended abstract is a heavily truncated version of
the full paper available at http://eprint.iacr.org/2002/165.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous; E.3 [Data]:
Data Encryption

General Terms
Security
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1. INTRODUCTION
Most voters participating in shareholder elections in the

United States have the option of casting ballots electron-
ically via a Web browser [1]. Some voters near Geneva
participating in recent referenda in Switzerland in 2003-4
have been able to cast binding votes over the Internet [19].
The UK government has enunciated plans to allow its citi-
zens to cast votes electronically “some time after 2006” [18].
These are just a few instances of a broadening trend toward
Internet-based voting. While voting of this kind appears
to encourage higher voter turnout [38] and make accurate
accounting for votes easier, it also carries the potential of
making abuse easier to perform, and easier to perform at a
large scale. A number of papers in the cryptographic lit-
erature have described ways of achieving robust and verifi-
able electronic elections, i.e., elections in which ballots and
processing data are posted to a publicly accessible bulletin
board. For just a few recent examples, see [8, 16, 21, 22, 27,
30, 34, 37, 40].

There are two other threats, however, that it is equally
crucial to address in a fair and democratic election process:
We speak of voter coercion and vote buying. Internet-based
voting does not introduce these problems, but it does have
the potential to exacerbate them by extending the reach
and data collection abilities of an attacker. This is high-
lighted in one way by the presence of a notorious Web site
that provides a forum for the auctioning of votes [2]. Seller
compliance was in that case merely voluntary. Conventional
Internet voting schemes, however, including those described
in the literature, actually provide an attacker with ready-
made tools for verifying voter behavior and thereby exert-
ing influence or control over voters. Without careful system
design, the threats of coercion and vote buying are poten-
tially far more problematic in Internet voting schemes than
in ordinary, physical voting schemes.

One commonly proposed way of achieving secure elec-
tronic voting systems is to use a cryptographic system known
as a mix network [14]. This is a tool that enables a collec-
tion of servers to take as input a collection of ciphertexts
and to output the corresponding plaintexts according to a
secret permutation. A straightforward way to achieve an
election system that preserves the privacy of voters, then, is
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to assign a private digital signing key to each voter. To cast
a ballot, the voter encrypts her choice and signs it, and then
posts it to a bulletin board (i.e., a publicly accessible mem-
ory space). When all ballots have been collected and the
corresponding signatures have been checked, the ciphertexts
are passed through a mix network. The resulting plaintext
versions of the voter choices may then be tallied. Thanks
to the privacy preserving property of the mix network, an
adversary cannot tell which vote was cast by which voter.
This approach is frequently advocated in the mix-network
literature, as in, e.g., [8, 14, 22, 27].

In an ordinary mix-based scheme of this kind, an adver-
sary can coerce a voter straightforwardly. The adversary
can simply furnish the voter with a ciphertext on a particu-
lar candidate, and then verify that the voter posted a ballot
containing that ciphertext. Alternatively, the adversary can
demand the private signing key of the voter and verify its
correctness against the corresponding public key. An adver-
sary attempting to buy votes can use the same means. Other
types of cryptographic voting schemes, namely homomor-
phic schemes [5, 16] and schemes based on blind signatures
[20, 37], suffer from similar vulnerabilities.

1.1 Previous work
Previous investigations of coercion-resistant voting have

been confined to the property of receipt-freeness. Roughly
stated, receipt-freeness is the inability of a voter to prove
to an attacker that she voted in a particular manner, even
if the voter wishes to do so. For a more formal definition,
see [37]. The property of receipt-freeness ensures that an at-
tacker cannot determine exact voter behavior and therefore
cannot coerce a voter by dictating her choice of candidate. It
also protects against vote-buying by preventing a potential
vote buyer from obtaining proof of the behavior of voters;
voters can thereby pretend to sell their votes, but defraud
the vote buyer. The notion of receipt-freeness first appeared
in work by Benaloh and Tuinstra [5]; their scheme, based on
homomorphic encryption, was shown in [25] not to possess
receipt-freeness as postulated. An independent introduction
of the idea appeared in Niemi and Renvall [35]. Okamoto
[36] proposed a voting scheme which he himself later showed
to lack the postulated receipt-freeness; a repaired version by
the same author, making use of blind signatures, appears in
[37]. Sako and Kilian [39] proposed a multi-authority scheme
employing a mix network to conceal candidate choices, and
a homomorphic encryption scheme for production of the fi-
nal tally. The modelling of their scheme was clarified and
refined by Michels and Horster [33]. The Sako and Kilian
scheme served as a conceptual basis for the later work of
Hirt and Sako [25], followed by the more efficient approach
of [3]; these two are the most efficient (and correct) receipt-
free voting schemes to date. A recently proposed scheme by
Magkos et al. [32] distinguishes itself by an approach relying
on tamper-resistant hardware, but is flawed.1

1We are unaware of any mention of a break of this scheme in
the literature, and therefore briefly describe one here. The
Magkos et al. system employs an interactive honest-verifier
ZK proof made by a smartcard to the voter. Presumably
because of the simulability of this proof, the authors describe
the proof as being “non-transferable.” This is not true. An
adversary can stipulate that the voter engage in the proof
using a challenge that the adversary has pre-selected. The
proof then becomes transferable, effectively a receipt for the
adversary. As noted in [25], this type of attack also explains

All of these receipt-free voting schemes include imprac-
tical assumptions. For example, these schemes assume the
availability of an untappable channel between the voter and
the authorities, that is, a channel that provides perfect se-
crecy in an information-theoretic sense. (I.e., even encryp-
tion does not provide an untappable channel.) The scheme
in [37] makes the even stronger assumption of an anonymous
untappable channel. (It is also not very practical in that it
requires voter interaction with the system three times in the
course of an election.) Moreover, all of these schemes (ex-
cepting [37]) lose the property of coercion-resistance if the
attacker can corrupt even one of the tallying authorities in
a distributed setting. The scheme of Hirt and Sako still re-
tains coercion-resistance when such corruption takes place,
but only under the strong assumption that the voter knows
which tallying authorities have been corrupted; the proposal
of Baudron et al. has a similar property.

A still more serious problem with of all of the receipt-
free voting schemes described in the literature, however, is
the fact that the property of receipt-freeness alone fails to
protect an election system against several forms of serious,
real-world attack, which we enumerate here:

1. Randomization attack This attack was noted by
Schoenmakers in 2000 [41]; he described its applica-
bility to the scheme of Hirt and Sako. The idea is
for an attacker to coerce a voter by requiring that she
submit randomly composed balloting material. In this
attack, the attacker (and perhaps even the voter) is
unable to learn what candidate the voter cast a bal-
lot for. The effect of the attack, however, is to nullify
the choice of the voter with a large probability. For
example, an attacker favoring the Republican party in
a United States election would benefit from mount-
ing a randomization attack against voters in a heavily
Democratic district.

2. Forced-abstention attack This attack relates to the
previous one based on randomization. The attacker
here coerces a voter by demanding that she refrain
from voting. All of the schemes cited above are vul-
nerable to this simple attack, because they authenti-
cate voters directly in order to demonstrate that they
are authorized to participate in the election. Thus,
an attacker can see who has voted, and use this in-
formation to threaten and effectively bar voters from
participation.2

3. Simulation attack The receipt-free schemes described
above assume that the attacker cannot coerce a voter
by causing her to divulge her private keying material
after the registration process but prior to the election
process. Such an attack, however, is a real and vi-
able one in previous schemes, because they permit an
attacker to verify the correctness of private keying ma-

why deniable encryption [12] does not solve the problem of
coercion in a voting system.
2An exception is the scheme in [37], which does not appear
to be vulnerable to a forced-abstention attack. This is be-
cause the scheme seems to assume that the authority checks
voter enrollment privately. In other words, the scheme does
not permit public verification that participating voters are
present on a published voter roll. This is potentially a prob-
lem in its own right.
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terial. For example, in [37], the voter provides a digi-
tal signature which, if correct, results in the authority
furnishing a blind digital signature. In [25], the voter,
when casting a ballot, proves knowledge of a private
key relative to a publicly committed value. In general,
receipt-freeness does not prevent an attacker from co-
ercing voters into divulging private keys or buying pri-
vate keys from voters and then simulating these voters
at will, i.e., voting on their behalf.

1.2 Our contribution
Our contribution in this paper is twofold. First, we inves-

tigate a stronger and broader notion of coercive attacks than
receipt-freeness. This notion, which we refer to as coercion-
resistance, captures what we believe to be the fullest possi-
ble range of adversarial behavior in a real-world, Internet-
based voting scheme. A coercion-resistant scheme offers not
only receipt-freeness, but also defense against randomiza-
tion, forced-abstention, and simulation attacks – all poten-
tially in the face of corruption of a minority of tallying au-
thorities. We propose a formal definition of coercion-freeness
in the body of this paper. Two other properties are essen-
tial for any voting scheme, whether or not it is coercion-
resistant. These are correctness and verifiability. As formal
definitions for these properties seem to be lacking in the lit-
erature, we provide them in the full paper; we thus provide
what we believe to be the first formal security framework
for electronic elections in general.

To demonstrate the practical realizability of our defini-
tions, we describe a voting scheme that possesses the strong
property of coercion-resistance proposed in this paper – and
also the properties of correctness and verifiability. Our pro-
posed scheme does not require untappable channels during
the voting process, but instead assumes voter access to an
anonymous channel at some point during the voting process.
(Registration does involve an untappable channel, but may
be achieved via, e.g., postal mail.) The assumption of anony-
mous channels in an election can be realized in a practical
way. (Exactly how practical is subject to some debate.) For
example, an adversary may be able to view communications
on the Internet, but not trace IP addresses to identities ef-
fectively. Or voters may achieve anonymity by using public
terminals in Internet cafés, libraries, workplaces, or physical
polling places to participate in an otherwise electronic elec-
tion. Popular use of mixnets would similarly help, e.g., [22,
34]; broadcast channels are another possible mechanism for
anonymity. Anonymous channels are, of course, a strictly
weaker assumption than untappable ones. Thus our scheme
can make use of untappable channels too. The assumption
of untappable channels may be reasonable in some limited
cases: It is not a straightforward matter for an unsophisti-
cated attacker to tap point-to-point communications on the
Internet, for example.

Anonymous channels are in fact a minimal requirement
for any coercion-resistant schemes: An attacker that can
identify which voters have participated can obviously mount
a forced-abstention attack.

A drawback of our scheme is that, even with use of asymp-
totically efficient mix networks as in [22, 34], the overhead
for tallying authorities is quadratic in the number of vot-
ers. Thus the scheme is only practical for small elections.
Our hope and belief, however, is that our proposed scheme
might serve as the basis for refinements with a higher degree

of practical application. We provide a security proof for our
proposed scheme in the full paper.

1.3 Intuition behind our scheme
In a conventional voting scheme, and also in receipt-free

schemes like [25], the voter Vi identifies herself at the time
she casts her ballot. This may be accomplished by means
of a digital signature on the ballot, or by an interactive
authentication protocol. The key idea behind our scheme
is for the identity of a voter to remain hidden during the
election process, and for the validity of ballots instead to be
checked blindly against a voter roll. When casting a ballot,
a voter incorporates a concealed credential. This takes the
form of a ciphertext on a secret value σ that is unique to the
voter. The secret σ is a kind of anonymous credential, quite
similar in spirit to, e.g., [9, 10]. To ensure that ballots are
cast by legitimate voters, the tallying authority T performs
a blind comparison between hidden credentials and a list ~L
of encrypted credentials published by an election registrar
R alongside the plaintext names of registered voters.

By means of mixing and blind comparison of ciphertext
values, it is possible to check whether a concealed creden-
tial is in the list ~L or not, without revealing which voter
the credential has been assigned to. In consequence, an at-
tacker who is given a fake credential σ̃ by a coerced voter
cannot tell whether or not the credential is valid. (The at-
tacker will learn how many ballots were posted with bad
credentials. Provided, however, that some spurious ones are
injected by honest players, authorities, or even outsiders,
the individuals associated with bad ballots will remain con-
cealed.) Moreover, the attacker cannot mount randomiza-
tion or forced-abstention attacks, since there is no feasible
way to determine whether an individual voter has posted a
ballot or not. In particular, after divulging fake credential
σ̃, a voter can go and vote again using her real credential σ.

1.4 Organization
In section 2, we describe our setup and attack models and

sketch a few of the major adversarial strategies. We pro-
vide formal definitions for the security property of coercion-
resistance in section 3. We describe the particulars of our
proposed scheme in section 4, prefaced by a summary of the
underlying cryptographic building blocks. In the full paper,
we offer formal definitions for the correctness and verifiabil-
ity of election schemes, a detailed security-proof outline, and
details on our choice of primitives for realizing our proposed
scheme.

2. MODELLING
An election system consists of several sets of entities:

1. Registrars: Denoted by R = {R1, R2, . . . , RnR}, this
is a set of nR entities responsible for jointly issuing
keying material, i.e., credentials to voters.

2. Authorities (Talliers): T = {T1, T2, . . . , TnT } denotes
the authorities responsible for processing ballots and
jointly counting votes and publishing a final tally.

3. Voters: Denoted by V = {V1, V2, . . . , VnV }, the nV

voters are the entities participating in a given election
administered byR. We let index i be a public identifier
for Vi.
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We make use of a bulletin board, denoted by BB. This is
a piece of universally accessible memory to which all players
have appendive-write access. In other words, any player can
write data to BB, but cannot overwrite or erase existing
data. Moreover, voters will be able to read the contents of
BB once the vote casting phase has ended. For notational
convenience, we assume that data are written to BB in µ-bit
blocks for an appropriate choice of µ. Shorter data segments
may be padded appropriately. For simplicity of exposition,
we assume no ordering on the contents of BB.

2.1 Functions
We define a candidate slate ~C to be an ordered set of

nC distinct identifiers {c1, c2, . . . , cnC}, each of which cor-
responds to a voter choice, typically a candidate or party
name. In an election, choice cj may be identified accord-
ing to its index j. Thus, for cryptographic purposes the
candidate slate consists of the integers {1, 2, . . . , nC} and
may be specified by nC alone. We define a tally on an elec-
tion under slate ~C to be a vector ~X of nC positive integers
x1, x2, . . . , xnC such that xj indicates the number of votes
cast for choice cj. The functions composing an election sys-
tem are then as follows:

• Registering: register(SKR, i, k1) → (ski, pki) takes
as input the private registrar key SKR, a (voter) iden-
tifier i and a security parameter k1, and outputs a key
pair (ski, pki). This is computed jointly by players in
R, possibly in interaction with voter Vi.

• Voting: vote(sk, PKT , nC , β, k2) → ballot takes as
input a private voting key, the public key of the au-
thorities T , the candidate-slate specification nC , a can-
didate selection β, and a security parameter k2, and
yields a ballot of bit length at most µ. The form of the
ballot will vary depending on the design of the election
system, but is in essence a digitally signed vote choice
encrypted under PKT .

• Tallying: tally(SKT ,BB, nC , {pki}nV
i=1, k3) → ( ~X,P )

takes as input the private key of the authority T , the
full contents of the bulletin board, the candidate-slate
size, all public voting keys, and a security parame-
ter k3 and outputs a vote tally ~X, along with a non-
interactive proof P that the tally was correctly com-
puted.

• Verifying: verify(PKT ,BB, nC , ~X,P ) → {0, 1} takes
as input the public key of the authorities, the con-
tents of the bulletin board, the candidate-slate size,
the voting tally, and a non-interactive proof of correct
tallying. It outputs a ‘0’ if the tally is incorrect and a
‘1’ otherwise. (We characterize the behavior of verify
more formally in the full paper.)

We define an election scheme ES as the collection of these
functions. Thus ES = {register, vote, tally, verify}.

2.1.0.1 Remark.
There are many election models in use throughout the

world. The model we propose here excludes important vari-
ants. In some systems, for example, voters are asked to rank
candidate choices, rather than just listing those they favor.
Many systems permit the use of write-in votes, i.e., the cast-
ing of a ballot in favor of a candidate not listed on the slate

for the election. We exclude write-in voting from our model
because it undermines the possibility of coercion resistance
in any scheme where an observer can see a complete election
tally including write-in votes. An attacker may, for example,
require coerced voters to cast write-in ballots for candidate
names consisting of random strings pre-specified by the at-
tacker. This way, the attacker can: (1) Verify that coerced
voters complied with instructions, by looking for the random
strings the attacker furnished, and (2) Ensure that the votes
of coerced voters are not counted, since random strings will
most likely not correspond to real election choices. (Thus,
this would combine the forced abstention attack and the
randomization attack.)

2.2 Summary of the attack model
We consider the process for a single election as proceeding

in these phases, corresponding largely with the functions
enumerated in section 2.1:

1. Setup: Key pairs are generated for or by R and T .
The candidate slate ~C for the election is published by
R with appropriate integrity protection.

2. Registration: The identities and eligibility of would-
be voters are verified by R. Given successful verifica-
tion, an individual becomes a registered voter, receiv-
ing fromR a credential permitting participation in the
election. Previously registered voters may be able to
re-use their credentials. R publishes a voter roll ~L.

3. Voting: Referring to the candidate slate ~C, registered
voters use their credentials to cast ballots.

4. Tallying: The authority T processes the contents of
the bulletin board BB so as to produce a tally vector
~X specifying the outcome of the election, along with a
proof of correctness P of the tally.

5. Verification: Any player, not just voters, can refer
to BB, P and ~L to verify the correctness of the tally
produced by T in the previous phase.

2.2.1 Assumptions in setup phase

Our security definitions permit the possibility of static,
active corruption by the adversary of a minority of players
in T in the setup phase. The security of our construction
then relies on generation of the key pair (SKT , PKT ) by
a trusted third party, or, alternatively, on an interactive,
computationally secure key-generation protocol such as [24]
between the players in T .

2.2.2 Assumptions prior to registration

The adversary may coerce a voter prior to the registra-
tion phase, either requesting in advance that the voter re-
tain transcripts of the registration process, or dictating voter
interaction with the registrar in advance.

2.2.3 Assumptions in registration phase

We assume that this phase is trustworthy. Strong integrity
of the registrar R is of course critical for any secure election
system. To evade coercion, a voter must be able to receive
a credential without adversarial interference. An adversary
capable of corrupting and seizing the credentials of a voter
in this initial phase can mount a full simulation attack. An
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adversary capable of preventing a voter from registering can
mount a forced-abstention attack.

We assume therefore that the voter receives her credential
from R via an untappable channel. We are helped here by
the fact that registration is generally an offline procedure.
For example, a voter might receive her registration through
the postal service. We must then assume that mail in the
postal system is not subject to compromise. Alternatively,
registration could be performed by voters in person.

It is further necessary to assume that an attacker cannot
obtain registration transcript data after the fact. Where
registration is electronic, for example, erasure of data from
voter interaction withRmust be compulsory by voters (e.g.,
enforced by smartcards). In a postal system, we must as-
sume that the adversary cannot harvest registration letters
from targeted voters (at least not many of them).

Finally, we must assume the integrity of the registration
procedure on the inside, i.e., we must assume that R is
trustworthy and does not leak credentials to the adversary.3

It may or may not be entirely feasible to achieve all of
these assumptions around the registration process in real-
world systems. We note, however, that if the registration
process does not have the integrity we require here, then
coercion-resistance is the least of our problems: Votes can
then be tampered with.

2.2.4 Assumptions on voting, tallying and verifi-
cation phases

Subsequent to the registration phase, we assume that the
adversary may seize control of a minority of players in T
and any number of voters in a static, active manner. (Since
R does not participate in the process subsequent to regis-
tration, we need not consider corruption of R at this point.)
The adversary may also attempt to coerce voters outside its
control by requesting that they divulge private keying ma-
terial4 or behave in a prescribed manner in voting. Voters
are assumed to be able to cast their ballots via anonymous
channels, i.e., channels such that an attacker cannot deter-
mine whether or not a given voter cast a ballot. We noted
some practical underpinnings for this assumption above. As
also noted above, this assumption is a requirement for any
election scheme to be fully coercion-resistant: If an attacker
can tell whether or not a given voter cast a ballot, then
the attacker can easily mount a forced-abstention attack.
We assume that either sessions are integrity protected (on
a per-session basis, since they are anonymous), or that the
adversary has only passive interaction with the network.

2.2.5 Not considered here

We do not treat the problem of denial-of-service attacks.
Mechanisms like [29] might help, but are beyond the scope of

3Some relaxation of this assumption is possible. If R com-
prises multiple players, computations by R are distributed,
and communication between players in R are made directly
with voters, then even if a minority of players in R is cor-
rupted, coercion-resistance is still possible. The catch is that
voters must know which players in R have been corrupted.
For details on this idea, see [25].
4We assume that the coercion takes place remotely. For
example, the adversary may not continuously watch over
the shoulder of a voter, monitor her hard-drive, etc. Our
proposed protocol does potentially defend against some
shoulder-surfing, however, by permitting voters to use fake
keys and/or re-vote.

our research. We also do not treat the problem of enabling
voters to verify that their votes have been counted. This
is in principle possible whilst retaining coercion resistance.
Honest voters could submit their credentials via anonymous
channels for verification of proper processing by authorities.
Authorities would concoct appropriate false replies for in-
valid credentials. We regard this as future work.

3. FORMAL DEFINITIONS
We now turn our attention to formal security definitions

of the essential properties of correctness, verifiability, and
coercion-resistance, respectively abbreviated corr, ver, and
c-resist. Our definitions hinge on a set of experiments in-
volving an adversary A in interaction with components of
the election system ES. This adversary is assumed to retain
state throughout the duration of an experiment. We formu-
late our experiments such that in all cases, the aim of the
adversary is to cause an output value of ‘1’. Thus, for ex-
periment ExpE

ES,A(·) on property E ∈ (ver, corr, c-resist),

we define SuccE
ES,A(·) = Pr[ExpE

ES,A(·) = ‘1’].
According to the standard definition, we say that a quan-

tity f(k) is negligible in k if for every positive integer c there
is some lc such that f(k) < k−c for k > lc. In most cases, we
use the term negligible alone to mean negligible with respect
to the full set of relevant security parameters. Similarly, in
saying that an algorithm has polynomial running time, we
mean that its running time is asymptotically bounded by
some polynomial in the relevant security parameters. As
the properties of correctness and verifiability are of less rel-
evance to our work than coercion-resistance, we relegate the
first two definitions to the full paper.

3.0.6 Coercion resistance

Coercion resistance may be regarded as an extension of
the basic property of privacy. Privacy in an election system
is defined in terms of an adversary that cannot interact with
voters during the election process. In particular, we say
that an election is private if such an adversary cannot guess
the vote of any voter better than an adversarial algorithm
whose only input is the election tally. (Note, for example,
in an election where all voters vote Republican, the system
may have the property of privacy, even though the adversary
knows how all voters cast their ballots in that election.)

Coercion resistance is a strong form of privacy in which
it is assumed that the adversary may interact with voters.
In particular, the adversary may instruct targeted voters
to divulge their private keys subsequent to registration, or
may specify that these voters cast ballots of a particular
form. If the adversary can determine whether or not vot-
ers behaved as instructed, then the adversary is capable of
blackmail or otherwise exercising undue influence over the
election process. Hence a coercion-resistant voting system is
one in which the user can deceive the adversary into think-
ing that she has behaved as instructed, when the voter has
in fact cast a ballot according to her own intentions.

Our definition of coercion resistance requires addition of
a new function to voting system ES:

• The function fakekey(PKT , sk, pk) → s̃k takes as in-
put the public key of the authorities, and the pri-
vate/public key pair of the voter. It outputs a spurious

key s̃k.
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Of course, for the function fakekey to enable coercion resis-
tance, the key s̃k must be indistinguishable by the adversary
A from a valid key, and only distinguishable by a majority
of talliers T . This property is captured in our experiment
characterizing coercion resistance. To simplify the formu-
lation of the experiment, we assume implicitly that tally is
computed by an oracle (with knowledge of SKT ). It suffices,
however, for T to be computed via a protocol that achieves
correct output and is computationally simulable by the ad-
versary A (who, it will be recalled, may corrupt a minority
of T ).

Our definition of coercion resistance centers on a kind of
game between the adversary A and a voter targeted by the
adversary for coercive attack. A coin is flipped; the outcome
is represented by a bit b. If b = 0, then the voter Vo casts a
ballot of its choice β, and provides the adversary with a false
voting key s̃k; in other words, the voter attempts to evade
adversarial coercion. The voter here is modeled as a function
Vo that selects a ballot from the slate represented by nC ,
or possibly a blank ballot φ. If b = 1, on the other hand,
then the voter submits to the coercion of the adversary; she
simply furnishes the adversary with her valid voting key sk,
and does not cast a ballot. The task of the adversary is to
guess the value of the coin b, that is, to determine whether
or not the targeted voter in fact cast a ballot.

We characterize the voting pattern of honest voters in
terms of a probability distribution Dn,nC . This distribution
models the state of knowledge of the adversary about the in-
tentions of these voters. Of course, the adversary generally
does not have perfect knowledge of the voting intentions of
honest voters. (Indeed, as we explain below, imperfect ad-
versarial knowledge is actually a requirement for meaningful
coercion-resistance.) For a collection of n voters outside the
control of the adversary – i.e., voters not subject to coer-
cion – we characterize the view of the adversary in terms
of a probability distribution Dn,nC . We let φ be a symbol
denoting a null ballot, i.e., an abstention, and let λ denote
a ballot cast with an invalid credential. Then Dn,nC is a
distribution over vectors (β1, β2, . . . , βn) ∈ (nC

⋃
φ

⋃
λ)n,

i.e., over the set of possible ballot choices for an election plus
abstentions and invalid ballots. For a set of n voting creden-
tials {ski}, we let vote({ski}, PKT , nC ,Dn,nC , k2) denote
the casting of ballots according to distribution Dn,nC . In
other words, a vector (β1, β2, . . . , βn) is drawn from Dn,nC

and vote βi is cast using credential ski.
We are now ready to present an experiment c-resist that

defines the game described above between an adversary and
a voter targeted for coercion. Recall that k1, k2, and k3 are
security parameters defined above, nV is the total number
of eligible voters for the election, and nC is the number
of candidates, i.e., the size of the candidate slate. We let
nA denote the number of voters that may be completely
controlled, i.e., corrupted by the adversary. We define nU =
nV −nA − 1. In other words, the number of uncertain votes
nU equals the total number of honest votes, i.e., the number
of possible votes, minus those coming from voters controlled
by the attacker, minus the vote coming from the voter the
attacker is trying to coerce (in the experiment).

We consider a static adversary, i.e., one that selects voters
to corrupt prior to protocol execution. We assume that the
adversary has a list of “voter names,” i.e., a roll of potential
participating voters.

We let ← denote assignment and ⇐ denote the append

operation, while % denotes the beginning of an annotative
comment on the experiment. Our experiment treats the
case in which the adversary seeks to coerce a single voter;
extension of the definition to coercion of multiple voters is
straightforward. The experiments defined here halt when an
output value is produced. The full paper contains helpful
comments on the pseudocode.

Experiment Expc-resist
ES,A,H (k1, k2, k3, nV , nA, nC)

V ← A(voter names, “control voters”);
{(ski, pki)← register(SKR, i, k2)}nV

i=1;
j ← A({ski}i∈V , “set target voter”);
β ← Vo(nC);
if |V | 6= nA or j 6∈ {1, 2, . . . , nV } − V then

output ‘0’;
b ∈U {0, 1};
if b = 0 then

s̃k← fakekey(PKT , skj, pkj);
BB ⇐ vote(skj, PKT , nC , β,k2);

else

s̃k← skj;
BB ⇐ vote({ski}i6=j,i6∈V , PKT , nC ,DnU ,nC , k2);

BB ⇐ A(s̃k,BB, “cast ballots”);

( ~X,P )← tally(SKT ,BB, nC , {pki}nV
i=1, k3);

b′ ← A( ~X,P,“guess b”);
if b′ = b then

output ‘1’;
else

output ‘0’;

The adversary A in the above experiment is quite power-
ful, being capable (when b = 1) of complete coercion of the
targeted voter. In order to characterize the success of A, we
must compare A with a second adversary A′. A′ is capa-
ble of coercion only within the framework of an ideal voting
experiment c-resist-ideal. In other words, A′ characterizes
the type of security against coercion that we would like to
achieve in ES.

The main feature we are aiming for in our ideal experi-
ment c-resist-ideal is for A′ to learn nothing from the pri-
vate keys she acquires from corrupted players and from the
coerced player. In particular, A′ cannot use private keys
to perform active attacks. We cause A′ to express voting
choices in a direct, ideal process; A′ cannot cast ballots, but
merely enumerates the choices of players in her control. Ad-
ditionally, A cannot use private keys to learn information
about the voting behavior of honest players or the coerced
player. The only information that A′ gets is the grand total
~X of votes in the election.

One feature of our experiment is counterintuitive. Be-
cause this is an ideal experiment, A′ is always given s̃k as
the key of the coerced player. This is because A′ should be
unable to determine, on the basis of keying material, from
the situation in which coercion is successful or unsuccessful.

We require a function for the definition. We include here
an ideal function ideal-tally that tallies the ballots posted
to BB in a special way. The function ideal-tally tallies in
a normal manner all of the ballots cast by honest voters,
i.e., prior to adversarial posting. The ballots cast by A′,
however, are treated specially. In particular, ideal-tally de-
termines for each ballot B what the underlying private key
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ski is. If i 6∈ V , i.e., if the private key is not one as-
signed to one of the corrupted players, then the correspond-
ing vote is not counted. Additionally, any double vote is
not counted, i.e., ideal-tally performs the weeding of double
votes that normally occurs during the tallying procedure.
Finally, ideal-tally does the following based on the value of
the secret bit b. If b = 0, then ideal-tally does not count any
ballot cast (by the adversary) using private key s̃k. If b = 1,
then ideal-tally does include in the final tally a ballot cast
using s̃k (excluding double votes).

Our definition of ideal-tally here assumes that every bal-
lot has a unique corresponding private key. This is true
of most natural ballot structures (and true of our proposed
scheme). This definition, of course, also assumes ideal func-
tionality in ideal-tally, namely the ability to extract private
keys and plaintext votes from ballots. We do not specify in
our definition how this “oracle” power is achieved. In our
proofs, we construct a simulator capable of performing this
functionality required from ideal-tally.

Note that although A′ receives the secret key of a coerced
voter in our ideal experiment, this is really just a technical
step. This secret key in fact provides A′ with no information
useful in voting, since the ideal function ideal-tally ensures
against misuse of keys; also, this secret key can provide no
information useful in learning votes, since A′ never sees BB.

We are now ready to present the experiment c-resist-ideal
that characterizes the success of A′.

Experiment Expc-resist-ideal
ES,A,H (k1, k2, k3, nV , nA, nC)

V ← A′(voter names, “control voters”);
{(ski, pki)← register(SKR, i, k2)}nV

i=1;
j ← A′(“set target voter”);
if |V | 6= nA or j 6∈ {1, 2, . . . , nV } − V then

output ‘0’;
β ← Vo(nC);
b ∈U {0, 1};
if b = 0 then

BB ⇐ vote(skj, PKT , nC , β, k2);

s̃k ⇐ skj;
BB ⇐ vote({ski}i6=j,i6∈V , PKT , nC ,DnU ,nC , k2);

BB ⇐ A′(s̃k, {ski}i∈V , “cast ballots”);

( ~X,P )← ideal-tally(SKT ,BB, nC , {pki}nV
i=1, k3);

b′ ← A( ~X, “guess b”);
if b′ = b then

output ‘1’;
else

output ‘0’;

Definition 1. We define an election scheme ES as coer-
cion resistant if for any polynomially-bounded adversary A,
any parameters n and nC , and any probability distribution
Dn,nC , the quantity

Advc-resist
ES,A =

∣∣∣Succc-resist
ES,A (·)− Succc-resist-ideal

ES,A (·)
∣∣∣

is negligible in all security parameters for any voter function
Vo.

Viewed intuitively, this definition means that in a real proto-
col execution, the adversary effectively learns nothing more
than the election tally ~X. The adversary cannot learn any

significant information from the protocol execution itself,
even when mounting an active attack.

3.1 The need for adversarial uncertainty
Even if an election scheme ES is coercion resistant by our

definition, i.e., |Succc-resist
ES,A (·)−Succc-resist-ideal

ES,A (·)| is neg-
ligibly close to 0, some (thankfully small) degree of coercion
remains possible for many natural distributions Dn,nC . In
many settings, we may well have Succc-resist-ideal

ES,A (·) � 0.
This seems counterintuitive, but in fact reflects a critical
observation: The degree of possible coercion resistance is
bounded below by adversarial uncertainty about the behav-
ior of honest voters. This is true for any election scheme
whatever.

For example, suppose that an adversary knows that a tar-
geted voter aims to vote “Democrat” and that every other
voter will vote “Republican.” Then coercion is unavoidable.
If a “Democrat” vote turns up, then the adversary will nec-
essarily know that the targeted voter has succeeded in reg-
istering a vote. Similarly, if the adversary is attempting to
coerce one voter in a given election and knows that all hun-
dred of the other eligible voters will cast ballots, then the
adversary can mount an abstention attack straightforwardly.
The adversary in this case simply threatens the voter in the
case that the total tally for the election is one hundred and
one.

Viewed another way, coercion resistance depends on the
“noise” or statistical uncertainty in the adversary’s view of
how honest voters will vote. In other words, it hinges on the
distribution Dn,nC . The more entropy in Dn,nC , the better
the level of attainable coercion resistance. Dn,nC serves the
purpose in our experiments of defining the distribution of
the “noise” that conceals the behavior of voters targeted by
the adversary for coercion.

To our benefit, it is natural to expect that in a real-world
election an adversary can obtain only fragmentary knowl-
edge about the likely behavior of voters. An adversary may
know, for instance, that most of the voters in a given district
will vote “Republican,” but probably won’t know exactly
how many. This means that coercion-resistance is a viable
possibility. (Additionally, it is possible for voting authorities
– or indeed any entity – intentionally to inject “chaff” in the
form of blank and invalid ballots into an election system.)

4. A COERCIONRESISTANT ELECTION
PROTOCOL

We are now ready to introduce our protocol proposal. We
begin by describing the cryptographic building blocks we
employ. Where appropriate, we model these as ideal primi-
tives, as discussed in the full paper.

4.0.1 Threshold public-key cryptosystem with re-
encryption

Our first building block is a threshold public-key cryp-
tosystem CS that permits re-encryption of ciphertexts with
knowledge only of public parameters and keys. The private
key for CS is held by T in our construction.

To describe our aim in the ideal, we would like any cipher-
text E to be perfectly hiding. We would like decryption to
be possible only by having a majority of players in T agree
on a ciphertext to be decrypted. We model this latter ideal
property as in terms of a special decryption oracle denoted

67



by ˜DEC. We assume further that any decryption performed
by ˜DEC is publicly verifiable.

4.0.2 Selected cryptosystem

At first El Gamal [23] may seem a natural choice of cryp-
tosystem for our purposes. However this solution is not com-
pletely satisfying in our setting for the following reason.

Our construction will be proved to achieve coercion resis-
tance under the Decisional Diffie-Hellman assumption (de-
tails of this proof are in the full paper). The basic idea of our
proof is very simple: One assumes that there is an adversary
A that has some advantage µ, in distinguish experiment c-
resist-real from experiment c-resist-ideal, and constructs an-
other algorithm S which, receives on input a challenge for
the decisional Diffie-Hellman problem [7, 42] (ga, gb, gc), and
“using” A, should be able to “solve” the challenge with a
related advantage µ′. Now, as it will become apparent in
section ??, in order for our proof to go through correctly
we require the simulator to be able to correctly decrypt a
given ciphertext even when this ciphertext is constructed
from the received challenge. Unfortunately basic El Gamal
does not allow this. Indeed, if one encrypts a message m
as (ga, gcm) the simulator cannot decrypt simply because it
does not know the discrete logarithm of gc in base ga.

To overcome this problem we adopt a modified version of
the basic El Gamal scheme which can be seen as a simplified
version of the well known Cramer-Shoup [17] cryptosystem
(but only providing semantic security with respect to a pas-
sive adversary). We let G denote the algebraic group over
which we employ this modified El Gamal (which we’ll sim-
ply call M-El Gamal), and q denote the group order. For se-
mantic security, we require that the Decision Diffie-Hellman
assumption hold over G. The public key is (g1, g2, h) where
g1, g2, h are elements in G. The secret key is x1, x2 ∈ Zq

such that h = gx1
1 gx2

2 .
To encrypt m one computes (A,B,C) = (gr

1, g
r
2 , hrm) for

random r. Decryption is similar to plain El Gamal: one
computes m = C/(Ax1Bx2). One can easily verify (see [17])
that this variant allows correct decryption even when cipher-
texts are constructed from the received challenge.

We let ∈U here and elsewhere denote uniform, random
selection from a set. A ciphertext in M-El Gamal on message
m ∈ G takes the form (α, β, γ) = (mhr, gr

1 , gr
2) for r ∈U Zq .

For succinctness of notation, we sometimes let Eh[m] denote
a ciphertext on message m under public key h (assuming
that g1 and g2 are considered public parameters).

Further details on the security of the scheme may be found
in the full paper. An important feature of the M-El Gamal
cryptosystem is that, exactly as the original version, it may
be easily implemented in a threshold setting. In other words,
the private keys x1, x2 may be distributed such that de-
cryption can be performed by any quorum of share holders,
without leakage of additional information. We exploit this
distributed form of M-El Gamal in our proposed election
scheme. As explained above, rather than focusing on a par-
ticular embodiment, we model the process by a decryption
oracle denoted by ˜DEC. We refer the reader to the full pa-
per and to [13] for further discussion of threshold decryption
in (plain) El Gamal.

4.0.3 Plaintext Equivalence Test (PET)

A plaintext equivalence test (PET) [26, 31] is cryptographic
primitive that operates on ciphertexts in a threshold cryp-

tosystem. The input to PET is a pair of ciphertexts; the
output is a single bit indicating whether the correspond-
ing plaintexts are equal or not. PET may be realized as
an efficient distributed protocol that reveals no additional,
non-negligible information about plaintexts. For a detailed
description of efficient methods to perform this verification,
along with security proofs, see [31]. Rather than focusing
on a specific embodiment of PET, we model the ideal prop-
erties of the primitive as an oracle denoted by ˜PET , with
the property of public verifiability.

4.0.4 Mix network

A (re-encryption) mix network (MN) is a distributed pro-

tocol that takes as input an ordered set ~E = {E1, E2, . . . , Ed}
of ciphertexts generated in a cryptosystem like El Gamal
that permits re-encryption. The output of MN is an or-
dered set ~E′ = {E′

π(1), E
′
π(2), . . . , E

′
π(d)}. Here, E′

π(i) is a
re-encryption of Ei, while π is a uniformly random, secret
permutation. This is to say that MN randomly and se-
cretly permutes and re-encrypts inputs. Thus, the special
privacy property of a mix network is this: An adversary
cannot determine which output ciphertext corresponds to
which input ciphertext, i.e., which inputs and outputs have
common plaintexts. Stated another way, an adversary can-
not determine π(j) for any j with probability non-negligibly
better than a random guess. A number of good mix net-
work constructions have been proposed that offer privacy
and robustness against a static, active adversary capable of
corrupting any minority of the n players (servers) perform-
ing the mix network operation, e.g., [22] and Neff [34]. These
constructions can offer the additional property of verifiabil-
ity. In other words, a proof is output that is checkable by
any party and demonstrates, relative to ~E and the public
key of the ciphertexts that ~E is correctly constructed. It
is convenient to conceptualize MN as an ideal primitive in
terms of an oracle M̃N for MN with the property of public
verifiability.

4.0.5 Proofs of knowledge

As sketched above, we use non-interactive proofs of knowl-
edge [6] in a number of places. We do not describe these tools
in detail, as they are standard in the literature. Instead, we
refer the reader to, e.g. [15], for discussion of construction
and logical composition of such protocols, and [11] for nota-
tion and discussion of efficient realization. As usual in the
literature, our proofs involve instantiation of the random
oracle model [4] in honest-verifier ZK proofs.

4.1 Our proposed protocol

4.1.1 Setup

The key pairs (SKR, PKR) and (SKT , PKT ) are gener-
ated (in an appropriately trustworthy manner, as described
above), and PKT and PKR are published along with all
system parameters.

4.1.2 Registration

Upon proof of eligibility from Vi, the registrarR generates
and transmits to Vi a random string σi ∈U G, the voter
credential. R then adds Si = EPKT [σi] to the voter roll ~L.5

5In our definitions above, we use the common terminology
of private and public keys – with corresponding notation ski
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The voter roll ~L is maintained on the bulletin board BB and
digitally signed as appropriate by R.

We assume the trustworthiness of R as explained above.
Still, if desired, R can furnish Vi with a proof that Si is
a valid ciphertext on σi. Where erasure of voter secrets is
not automatic, a designated verifier proof [28] is needed for
coercion resistance.

4.1.3 Candidate-slate publication

R or some other authority publishes an integrity-protected
candidate slate ~C with names and unique identifiers in G for
nC candidates. This authority also publishes a unique, ran-
dom election identifier ε.

4.1.4 Voting

Voter Vi casts a ballot for candidate cj comprising M-El

Gamal ciphertexts (E
(i)
1 , E

(i)
2 ) respectively on choice cj and

credential σi. In particular, for a1, a2 ∈U Zq:

E
(i)
1 = (α1, α

′
1, β1) = (ga1

1 , ga1
2 , cjh

a1) and

E
(i)
2 = (α2, α

′
2, β2) = (ga2

1 , ga2
2 , σih

a2).

The first is a ciphertext on the candidate choice of the voter,
the second a ciphertext on the credential of the voter.

Additionally, Vi includes non-interactive proofs of knowl-
edge of σi and cj, and also a proof that cj ∈ ~C, i.e., that
cj represents a valid candidate choice. The latter can be
accomplished, for example, using a disjunctive proof that
the ciphertext constitutes a valid encryption of a candidate
choice in ~C. It is needed because an invalid candidate choice
is like a write-in: It can effectively serve as a receipt. These
proofs, which we denote collectively by Pf , may be accom-
plished efficiently using standard techniques. As is standard
practice, the challenge values for Pf derive from calls to a
cryptographic hash function, modeled in our security anal-
ysis by a random oracle ˜OW . Input to ˜OW for these chal-
lenge values includes ε,E1, E2 and commitment values re-
quired for the non-interactive proofs of knowledge. Vi posts
Bi = (E1, E2, Pf) to BB via an anonymous channel.

Note: This is not a receipt! By assumption, the adver-
sary does not know whether or not a given voter has even
posted a vote. The adversary therefore can’t simply coerce
by requesting decryption information.

4.1.5 Tallying

To tally the ballots posted to BB, the authority T per-
forms the following steps:

1. Checking proofs: T verifies the correctness of all
proofs on BB. Any ballots with invalid proofs are dis-
carded. For the valid, remaining ballots, let ~A1 denote
the list of ciphertexts on candidate choices (i.e., the E1

ciphertexts), and let ~B1 denote the list of ciphertexts
on credentials (i.e., the E2 ciphertexts).

2. Eliminating duplicates: The tallying authority T
performs pairwise PETs on all ciphertexts in ~B1, and

and pki – to describe the credentials associated with voters.
Shifting from a general exposition to our specific protocol,
we now use σi instead of ski to denote a voter credential, and
Si instead of pki to denote a public representation thereof.
This notational change reflects voters’ use of an unconven-
tional form of public-key authentication in our scheme.

removes duplicates according to some pre-determined
policy, e.g., order of postings to BB. When an element
is removed from ~B1, the corresponding element (i.e.,

that with the same index) is removed from ~A1. We

let ~B′
1 and ~A′

1 be the resulting “weeded” vectors. This
process retains at most one ballot per credential.

3. Mixing: T applies MN to ~A′
1 and ~B′

1 (using the same,

secret permutation for both). Let ~A2 and ~B2 be the
resulting lists of ciphertexts.

4. Checking credentials: T applies mix network MN
to the encrypted list ~L of credentials from the voter
roll. T then compares each ciphertext of ~B2 to the
ciphertexts of ~L using PET. T retains a vector ~A3

of all ciphertexts of ~A2 for which the corresponding
elements of ~B2 match an element of ~L according to
PET. This step achieves the weeding of ballots based
on invalid voter credentials.

5. Tallying: T decrypts all ciphertexts in ~A3 and tallies
the final result.

4.1.6 How to cheat a coercer

One possible implementation of the function fakekey is
simply for the coerced voter Vi to claim that a random group
element σ̃i is the true credential σi. (If coerced multiple
times, the voter Vi releases the same value σ̃i.) We discuss
faking of voting keys in more detail in the full paper.
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