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1. THE STOKES THEOREM

Theorem 1.1. Let (M, A) be an oriented n-manifold with boundary. (Here A is the orientation on M. As
usual, we let A be the induced orientation on OM.) Letw € QP~Y(M), and given the inclusion map i : OM — M,
we denote i*w € Q" (OM) as w. Then
/ dw = / w
M oM

Proof. We first consider the special case of M = H". Let w € Qén_l)(H”). Since w is supported in a compact
set, there is a “rectangle” of the form
A=[-rr] X ..x[-rr] x][0,s] Cc H" r>0

such that w(z) = 0 for each x € H™ \ A. Note that in particular, this means that w(z) = 0 whenever
x € Int(H™) N OA, however the restriction of w to 9H"™ N JA may be nontrivial (this is indeed exactly the case
when the theorem is interesting!).

We write

3 widz' A A dzi A ... A da”

1<i<n
where the dx? denotes that the dz? term has been omitted. We compute

3 dwi Adat A Adz A da”

1<i<n

= Z &%dxj/\dx/\ AT A A dz"
oxJ

= Z &%dm Adzt A . Adzi A .. A da”
ozt

1<i<n
Ow;
= > (-1~ lawd Ao Adx™
1<i<n
We compute
/ dw—/ 3 (-1 la“’Zd LA A da”
Hn Hn N 8

1<i<n

v [ B
1<z<n -r Oz

Since the order of the integrals can be changed without changing the integral (by Fubini’s theorem), we obtain
that the above equals:

- 1// / 09t grida® .= da e+ (1) 1/ / 8“” da"dat . da" "t (%)
—r —-r —rJO

1<z<n
1 1/ / / 8wz do'dxt...dx " tda' . da™
1<z<n -r
= Z 1/ / / wi ()] Zr dx Lda T e de =0

1<z<n

We analyse the first term to obtain
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Since w(z) = 0 whenever z° € {—r, +r} for i # n. So in the sum (x) above, only the second term remains:

)" 1/ / / —dac"dac nda™ !
—r —r

= n 1/ / wn 7-.., 7T) _wn(‘rlv"'7xn71’0))dx1"'dxn71

:(—1)"71/ / (0 —wp(x!, ..., 2" 0))dst ... da" !
—1)”/ / wn (2t . 2" 0)dat .. da" ()

w= widz! A .. /\d:cl/\ Adx™
J ™ e 2

H" 1<i<n

Z / widzt A /\dgcl/\ A dz"
OH™

1<i<n
Since dx™ = 0 on 0H", the only nonzero term in the above sum is

/ wpdxt A Adz" Tt
BHTI,

/ wn(xt, .., z™, 0)dz A .. A da™ ! (% % %)
ANoH"

Taking into account the orientation for 9H™: when n is even, it is positively oriented and when n is odd, it is
negatively oriented, we obtain that (x * %) = (xx), proving the Theorem for the case of H".

Note that in the special case of M = R"”, where there is no boundary, the same computation as above goes
through with the additional fact that the ¢ = n term vanishes as well. So both sides of the equation are equal
to 0.

Now let M be an arbitrary smooth manifold with boundary. Consider a form w € anfl)(M ) such that
supp(w) C U for a smooth positively oriented chart (U, ¢). Then we have

| o= [ @y [ aeye) = [ @ty

where OJH" is given the induced orientation. Note that ¢ [ U NdM is an orientation preserving diffeomorphism
onto ¢(U) N OH". It follows that
| oye= | w
oH" oM
This proves the theorem in this case.
Finally, let w € Q?~}(M) be an arbitrary compactly supported smooth n — 1 form. Let {(Uq, ¢o) | @ € I}
be a finite collection of charts that covers supp(w). Let {1, | @ € I} be a partition of unity subordinate to this

collection. Then we have
w = 1/101(") = / waw
| o= vw=%

ael acl
(To understand the second equality above, note that since each ¥,w is an n— 1 form whose support is contained
in a single chart, we can apply the theorem for this special case).

Z/ (Yow) = Z/ (dipe A w + hadw)

acl ael

/Zdz{;a/\erZ/ Yadw

acl acl

/ O va) /\w+2/ Padw

acl acl

:/ (1n) /\w+Z/ P dw

acl

—O—&—Z/ ¢adw—/ dw

acl

Now we analyse

This equals
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Remark 1.2. (Fundamental theorem of calculus) The stokes theorem generalised the fundamental theorem of
calculus in the following manner. Given

w=f €9%a,]) = C=([a,b])

/ do= [ f(x)ds= / f=10®) = f(a)
[a,b] [a,b] Ola,b]

Note that here we have the standard “left to right” orientation on [0, 1], and in the induced orientation on the
boundary, the point 1 is assigned +1 and the point 0 is assigned —1.

we have that

Remark 1.3. (Fundamental theorem of line integrals) Let M be a smooth manifold and let v : [a,b] — M be a
smooth embedding, so that S = 7y([a,b]) is an embedded 1-submanifold with boundary in M. If we give S the
orientation such that -y is orientation preserving, then for any smooth function f € C°°(M), the Stokes theorem

says that
L af = /M df = /S &= [ 1=160)-160@)

Here are a few important corollaries of the theorem.

Corollary 1.4. (Integrals of closed forms over boundaries) Suppose that M is a compact oriented smooth
n-manifold with boundary. If w € Q" (M) is a closed form, then

/ wz/ dw =20
oM M

Corollary 1.5. (Integrals of exact forms) If M is a compact oriented smooth manifold without boundary, then
the integral of every exact form over M is zero:

/ dwz/ w=0
M oM

Corollary 1.6. (Submanifolds) Let M be a smooth n-manifold (with or without boundary). Let S C M be an
oriented compact smooth k-submanifold (without boundary). Let w € QF(M) be closed. If [gw # 0, then the
following holds:

(1) w is not exact on M.
(2) S is not the boundary of an oriented compact smooth submanifold with boundary in M.

Definition 1.7. In a manifold M, a regular compact domain is a set D C M, which is compact and has the
property that for each p € D, there is a chart (U, ¢) of M containing p such that

o(UnNoD) c oH" o(UND)cCH"
Example 1.8. The closed 1-form
_ (zdy — ydx)
Sl e
has a nonzero integral over S*. Moreover, it is not exact on R?\ {0}. The preceding corollary also tells us that
S! is not the boundary of a compact regular domain in R?\ {0}.

Theorem 1.9. (Green’s theorem) Suppose that D is a compact regular domain in R?, and P, Q are smooth real
valued functions on D. Then

2Q oP
— — —)dzdy = Pdx — Qd
[, = 3o = |, pia =ty

Proof. We apply the Stokes theorem to the form
Pdx + Qdy € Q'(D)



