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1. The Stokes theorem

Theorem 1.1. Let (M,A) be an oriented n-manifold with boundary. (Here A is the orientation on M . As

usual, we let Ã be the induced orientation on ∂M .) Let ω ∈ Ωn−1c (M), and given the inclusion map i : ∂M →M ,
we denote i∗ω ∈ Ωn−1(∂M) as ω. Then ∫

M

dω =

∫
∂M

ω

Proof. We first consider the special case of M = Hn. Let ω ∈ Ω
(n−1)
c (Hn). Since ω is supported in a compact

set, there is a “rectangle” of the form

A = [−r, r]× ...× [−r, r]× [0, s] ⊂ Hn r > 0

such that ω(x) = 0 for each x ∈ Hn \ A. Note that in particular, this means that ω(x) = 0 whenever
x ∈ Int(Hn) ∩ ∂A, however the restriction of ω to ∂Hn ∩ ∂A may be nontrivial (this is indeed exactly the case
when the theorem is interesting!).

We write

ω =
∑

1≤i≤n

ωidx
1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn

where the d̂xi denotes that the dxi term has been omitted. We compute

dω =
∑

1≤i≤n

dωi ∧ dx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn

=
∑

1≤i,j≤n

∂ωi
∂xj

dxj ∧ dx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn

=
∑

1≤i≤n

∂ωi
∂xi

dxi ∧ dx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn

=
∑

1≤i≤n

(−1)i−1
∂ωi
∂xi

dx1 ∧ ... ∧ dxn

We compute ∫
Hn

dω =

∫
Hn

∑
1≤i≤n

(−1)i−1
∂ωi
∂xi

dx1 ∧ ... ∧ dxn

=
∑

1≤i≤n

(−1)i−1
∫ r

−r
...

∫ r

−r

∫ r

0

∂ωi
∂xi

dx1...dxn

Since the order of the integrals can be changed without changing the integral (by Fubini’s theorem), we obtain
that the above equals:

=
∑

1≤i<n

(−1)i−1
∫ r

0

∫ r

−r
...

∫ r

−r

∂ωi
∂xi

dxidx1...dxi−1dxi+1...dxn+(−1)n−1
∫ r

−r
...

∫ r

−r

∫ r

0

∂ωn
∂xn

dxndx1...dxn−1 (∗)

We analyse the first term to obtain∑
1≤i<n

(−1)i−1
∫ r

0

∫ r

−r
...

∫ r

−r

∂ωi
∂xi

dxidx1...dxi−1dxi+1...dxn

=
∑

1≤i<n

(−1)i−1
∫ r

0

∫ r

−r
...

∫ r

−r
[ωi(x)]xi=r

xi=−rdx
1...dxi−1dxi+1...dxn = 0
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Since ω(x) = 0 whenever xi ∈ {−r,+r} for i 6= n. So in the sum (∗) above, only the second term remains:

(−1)n−1
∫ r

−r
...

∫ r

−r

∫ r

0

∂ωn
∂xn

dxndx1...dxn−1

= (−1)n−1
∫ r

−r
...

∫ r

−r
(ωn(x1, ..., xn−1, r)− ωn(x1, ..., xn−1, 0))dx1...dxn−1

= (−1)n−1
∫ r

−r
...

∫ r

−r
(0− ωn(x1, ..., xn−1, 0))dx1...dxn−1

= (−1)n
∫ r

−r
...

∫ r

−r
ωn(x1, ..., xn−1, 0)dx1...dxn−1 (∗∗)

Now we analyse ∫
∂Hn

ω =

∫
∂Hn

∑
1≤i≤n

ωidx
1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn

∑
1≤i≤n

∫
∂Hn

ωidx
1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn

Since dxn = 0 on ∂Hn, the only nonzero term in the above sum is∫
∂Hn

ωndx
1 ∧ ... ∧ dxn−1

This equals ∫
A∩∂Hn

ωn(x1, ..., xn, 0)dx1 ∧ ... ∧ dxn−1 (∗ ∗ ∗)

Taking into account the orientation for ∂Hn: when n is even, it is positively oriented and when n is odd, it is
negatively oriented, we obtain that (∗ ∗ ∗) = (∗∗), proving the Theorem for the case of Hn.

Note that in the special case of M = Rn, where there is no boundary, the same computation as above goes
through with the additional fact that the i = n term vanishes as well. So both sides of the equation are equal
to 0.

Now let M be an arbitrary smooth manifold with boundary. Consider a form ω ∈ Ω
(n−1)
c (M) such that

supp(ω) ⊂ U for a smooth positively oriented chart (U, φ). Then we have∫
M

dω =

∫
Hn

(φ−1)∗dω =

∫
Hn

d((φ−1)∗ω) =

∫
∂Hn

(φ−1)∗ω

where ∂Hn is given the induced orientation. Note that φ � U ∩ ∂M is an orientation preserving diffeomorphism
onto φ(U) ∩ ∂Hn. It follows that ∫

∂Hn

(φ−1)∗ω =

∫
∂M

ω

This proves the theorem in this case.
Finally, let ω ∈ Ωn−1c (M) be an arbitrary compactly supported smooth n − 1 form. Let {(Uα, φα) | α ∈ I}

be a finite collection of charts that covers supp(ω). Let {ψα | α ∈ I} be a partition of unity subordinate to this
collection. Then we have ∫

∂M

ω =
∑
α∈I

∫
∂M

ψαω =
∑
α∈I

∫
M

d(ψαω)

(To understand the second equality above, note that since each ψαω is an n−1 form whose support is contained
in a single chart, we can apply the theorem for this special case).∑

α∈I

∫
M

d(ψαω) =
∑
α∈I

∫
M

(dψα ∧ ω + ψαdω)

=

∫
M

∑
α∈I

dψα ∧ ω +
∑
α∈I

∫
M

ψαdω

=

∫
M

d(
∑
α∈I

ψα) ∧ ω +
∑
α∈I

∫
M

ψαdω

=

∫
M

d(1M ) ∧ ω +
∑
α∈I

∫
M

ψαdω

= 0 +
∑
α∈I

∫
M

ψαdω =

∫
M

dω
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Remark 1.2. (Fundamental theorem of calculus) The stokes theorem generalised the fundamental theorem of
calculus in the following manner. Given

ω = f ∈ Ω0([a, b]) = C∞([a, b])

we have that ∫
[a,b]

dω =

∫
[a,b]

f ′(x)dx =

∫
∂[a,b]

f = f(b)− f(a)

Note that here we have the standard “left to right” orientation on [0, 1], and in the induced orientation on the
boundary, the point 1 is assigned +1 and the point 0 is assigned −1.

Remark 1.3. (Fundamental theorem of line integrals) Let M be a smooth manifold and let γ : [a, b]→M be a
smooth embedding, so that S = γ([a, b]) is an embedded 1-submanifold with boundary in M . If we give S the
orientation such that γ is orientation preserving, then for any smooth function f ∈ C∞(M), the Stokes theorem
says that ∫

γ

df =

∫
[a,b]

γ∗df =

∫
S

df =

∫
∂S

f = f(γ(b))− f(γ(a))

Here are a few important corollaries of the theorem.

Corollary 1.4. (Integrals of closed forms over boundaries) Suppose that M is a compact oriented smooth
n-manifold with boundary. If ω ∈ Ωn(M) is a closed form, then∫

∂M

ω =

∫
M

dω = 0

Corollary 1.5. (Integrals of exact forms) If M is a compact oriented smooth manifold without boundary, then
the integral of every exact form over M is zero:∫

M

dω =

∫
∂M

ω = 0

Corollary 1.6. (Submanifolds) Let M be a smooth n-manifold (with or without boundary). Let S ⊆ M be an
oriented compact smooth k-submanifold (without boundary). Let ω ∈ Ωkc (M) be closed. If

∫
S
ω 6= 0, then the

following holds:

(1) ω is not exact on M .
(2) S is not the boundary of an oriented compact smooth submanifold with boundary in M .

Definition 1.7. In a manifold M , a regular compact domain is a set D ⊂ M , which is compact and has the
property that for each p ∈ ∂D, there is a chart (U, φ) of M containing p such that

φ(U ∩ ∂D) ⊂ ∂Hn φ(U ∩D) ⊂ Hn

Example 1.8. The closed 1-form

ω =
(xdy − ydx)

x2 + y2

has a nonzero integral over S1. Moreover, it is not exact on R2 \ {0}. The preceding corollary also tells us that
S1 is not the boundary of a compact regular domain in R2 \ {0}.

Theorem 1.9. (Green’s theorem) Suppose that D is a compact regular domain in R2, and P,Q are smooth real
valued functions on D. Then ∫

D

(
∂Q

∂x
− ∂P

∂y
)dxdy =

∫
∂D

Pdx−Qdy

Proof. We apply the Stokes theorem to the form

Pdx+Qdy ∈ Ω1(D)
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