## STOKES THEOREM

YASH LODHA

## 1. The Stokes theorem

Theorem 1.1. Let $(M, \mathcal{A})$ be an oriented n-manifold with boundary. (Here $\mathcal{A}$ is the orientation on $M$. As usual, we let $\tilde{\mathcal{A}}$ be the induced orientation on $\partial M$.) Let $\omega \in \Omega_{c}^{n-1}(M)$, and given the inclusion map $i: \partial M \rightarrow M$, we denote $i^{*} \omega \in \Omega^{n-1}(\partial M)$ as $\omega$. Then

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Proof. We first consider the special case of $M=\mathbf{H}^{n}$. Let $\omega \in \Omega_{c}^{(n-1)}\left(\mathbf{H}^{n}\right)$. Since $\omega$ is supported in a compact set, there is a "rectangle" of the form

$$
A=[-r, r] \times \ldots \times[-r, r] \times[0, s] \subset \mathbf{H}^{n} \quad r>0
$$

such that $\omega(x)=0$ for each $x \in \mathbf{H}^{n} \backslash A$. Note that in particular, this means that $\omega(x)=0$ whenever $x \in \operatorname{Int}\left(\mathbf{H}^{n}\right) \cap \partial A$, however the restriction of $\omega$ to $\partial \mathbf{H}^{n} \cap \partial A$ may be nontrivial (this is indeed exactly the case when the theorem is interesting!).

We write

$$
\omega=\sum_{1 \leq i \leq n} \omega_{i} d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n}
$$

where the $\widehat{d x^{i}}$ denotes that the $d x^{i}$ term has been omitted. We compute

$$
\begin{gathered}
d \omega=\sum_{1 \leq i \leq n} d \omega_{i} \wedge d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n} \\
=\sum_{1 \leq i, j \leq n} \frac{\partial \omega_{i}}{\partial x^{j}} d x^{j} \wedge d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n} \\
=\sum_{1 \leq i \leq n} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{i} \wedge d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n} \\
=\sum_{1 \leq i \leq n}(-1)^{i-1} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{1} \wedge \ldots \wedge d x^{n}
\end{gathered}
$$

We compute

$$
\begin{gathered}
\int_{\mathbf{H}^{n}} d \omega=\int_{\mathbf{H}^{n}} \sum_{1 \leq i \leq n}(-1)^{i-1} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{1} \wedge \ldots \wedge d x^{n} \\
=\sum_{1 \leq i \leq n}(-1)^{i-1} \int_{-r}^{r} \ldots \int_{-r}^{r} \int_{0}^{r} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{1} \ldots d x^{n}
\end{gathered}
$$

Since the order of the integrals can be changed without changing the integral (by Fubini's theorem), we obtain that the above equals:

$$
\begin{equation*}
=\sum_{1 \leq i<n}(-1)^{i-1} \int_{0}^{r} \int_{-r}^{r} \ldots \int_{-r}^{r} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{i} d x^{1} \ldots d x^{i-1} d x^{i+1} \ldots d x^{n}+(-1)^{n-1} \int_{-r}^{r} \ldots \int_{-r}^{r} \int_{0}^{r} \frac{\partial \omega_{n}}{\partial x^{n}} d x^{n} d x^{1} \ldots d x^{n-1} \tag{*}
\end{equation*}
$$

We analyse the first term to obtain

$$
\begin{aligned}
& \sum_{1 \leq i<n}(-1)^{i-1} \int_{0}^{r} \int_{-r}^{r} \ldots \int_{-r}^{r} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{i} d x^{1} \ldots d x^{i-1} d x^{i+1} \ldots d x^{n} \\
= & \sum_{1 \leq i<n}(-1)^{i-1} \int_{0}^{r} \int_{-r}^{r} \ldots \int_{-r}^{r}\left[\omega_{i}(x)\right]_{x_{i}=-r}^{x_{i}=r} d x^{1} \ldots d x^{i-1} d x^{i+1} \ldots d x^{n}=0
\end{aligned}
$$

Since $\omega(x)=0$ whenever $x^{i} \in\{-r,+r\}$ for $i \neq n$. So in the sum ( $*$ ) above, only the second term remains:

$$
\begin{gather*}
(-1)^{n-1} \int_{-r}^{r} \ldots \int_{-r}^{r} \int_{0}^{r} \frac{\partial \omega_{n}}{\partial x^{n}} d x^{n} d x^{1} \ldots d x^{n-1} \\
=(-1)^{n-1} \int_{-r}^{r} \ldots \int_{-r}^{r}\left(\omega_{n}\left(x^{1}, \ldots, x^{n-1}, r\right)-\omega_{n}\left(x^{1}, \ldots, x^{n-1}, 0\right)\right) d x^{1} \ldots d x^{n-1} \\
=(-1)^{n-1} \int_{-r}^{r} \ldots \int_{-r}^{r}\left(0-\omega_{n}\left(x^{1}, \ldots, x^{n-1}, 0\right)\right) d x^{1} \ldots d x^{n-1} \\
=(-1)^{n} \int_{-r}^{r} \ldots \int_{-r}^{r} \omega_{n}\left(x^{1}, \ldots, x^{n-1}, 0\right) d x^{1} \ldots d x^{n-1} \quad(* *) \tag{**}
\end{gather*}
$$

Now we analyse

$$
\begin{gathered}
\int_{\partial \mathbf{H}^{n}} \omega=\int_{\partial \mathbf{H}^{n}} \sum_{1 \leq i \leq n} \omega_{i} d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n} \\
\sum_{1 \leq i \leq n} \int_{\partial \mathbf{H}^{n}} \omega_{i} d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n}
\end{gathered}
$$

Since $d x^{n}=0$ on $\partial \mathbf{H}^{n}$, the only nonzero term in the above sum is

$$
\int_{\partial \mathbf{H}^{n}} \omega_{n} d x^{1} \wedge \ldots \wedge d x^{n-1}
$$

This equals

$$
\int_{A \cap \partial \mathbf{H}^{n}} \omega_{n}\left(x^{1}, \ldots, x^{n}, 0\right) d x^{1} \wedge \ldots \wedge d x^{n-1} \quad(* * *)
$$

Taking into account the orientation for $\partial \mathbf{H}^{n}$ : when $n$ is even, it is positively oriented and when $n$ is odd, it is negatively oriented, we obtain that $(* * *)=(* *)$, proving the Theorem for the case of $\mathbf{H}^{n}$.

Note that in the special case of $M=\mathbf{R}^{n}$, where there is no boundary, the same computation as above goes through with the additional fact that the $i=n$ term vanishes as well. So both sides of the equation are equal to 0 .

Now let $M$ be an arbitrary smooth manifold with boundary. Consider a form $\omega \in \Omega_{c}^{(n-1)}(M)$ such that $\operatorname{supp}(\omega) \subset U$ for a smooth positively oriented chart $(U, \phi)$. Then we have

$$
\int_{M} d \omega=\int_{\mathbf{H}^{n}}\left(\phi^{-1}\right)^{*} d \omega=\int_{\mathbf{H}^{n}} d\left(\left(\phi^{-1}\right)^{*} \omega\right)=\int_{\partial \mathbf{H}^{n}}\left(\phi^{-1}\right)^{*} \omega
$$

where $\partial \mathbf{H}^{n}$ is given the induced orientation. Note that $\phi \upharpoonright U \cap \partial M$ is an orientation preserving diffeomorphism onto $\phi(U) \cap \partial \mathbf{H}^{n}$. It follows that

$$
\int_{\partial \mathbf{H}^{n}}\left(\phi^{-1}\right)^{*} \omega=\int_{\partial M} \omega
$$

This proves the theorem in this case.
Finally, let $\omega \in \Omega_{c}^{n-1}(M)$ be an arbitrary compactly supported smooth $n-1$ form. Let $\left\{\left(U_{\alpha}, \phi_{\alpha}\right) \mid \alpha \in I\right\}$ be a finite collection of charts that covers $\operatorname{supp}(\omega)$. Let $\left\{\psi_{\alpha} \mid \alpha \in I\right\}$ be a partition of unity subordinate to this collection. Then we have

$$
\int_{\partial M} \omega=\sum_{\alpha \in I} \int_{\partial M} \psi_{\alpha} \omega=\sum_{\alpha \in I} \int_{M} d\left(\psi_{\alpha} \omega\right)
$$

(To understand the second equality above, note that since each $\psi_{\alpha} \omega$ is an $n-1$ form whose support is contained in a single chart, we can apply the theorem for this special case).

$$
\begin{gathered}
\sum_{\alpha \in I} \int_{M} d\left(\psi_{\alpha} \omega\right)=\sum_{\alpha \in I} \int_{M}\left(d \psi_{\alpha} \wedge \omega+\psi_{\alpha} d \omega\right) \\
\quad=\int_{M} \sum_{\alpha \in I} d \psi_{\alpha} \wedge \omega+\sum_{\alpha \in I} \int_{M} \psi_{\alpha} d \omega \\
=\int_{M} d\left(\sum_{\alpha \in I} \psi_{\alpha}\right) \wedge \omega+\sum_{\alpha \in I} \int_{M} \psi_{\alpha} d \omega \\
=\int_{M} d\left(1_{M}\right) \wedge \omega+\sum_{\alpha \in I} \int_{M} \psi_{\alpha} d \omega \\
=0+\sum_{\alpha \in I} \int_{M} \psi_{\alpha} d \omega=\int_{M} d \omega
\end{gathered}
$$

Remark 1.2. (Fundamental theorem of calculus) The stokes theorem generalised the fundamental theorem of calculus in the following manner. Given

$$
\omega=f \in \Omega^{0}([a, b])=C^{\infty}([a, b])
$$

we have that

$$
\int_{[a, b]} d \omega=\int_{[a, b]} f^{\prime}(x) d x=\int_{\partial[a, b]} f=f(b)-f(a)
$$

Note that here we have the standard "left to right" orientation on $[0,1]$, and in the induced orientation on the boundary, the point 1 is assigned +1 and the point 0 is assigned -1 .

Remark 1.3. (Fundamental theorem of line integrals) Let $M$ be a smooth manifold and let $\gamma:[a, b] \rightarrow M$ be a smooth embedding, so that $S=\gamma([a, b])$ is an embedded 1-submanifold with boundary in $M$. If we give $S$ the orientation such that $\gamma$ is orientation preserving, then for any smooth function $f \in C^{\infty}(M)$, the Stokes theorem says that

$$
\int_{\gamma} d f=\int_{[a, b]} \gamma^{*} d f=\int_{S} d f=\int_{\partial S} f=f(\gamma(b))-f(\gamma(a))
$$

Here are a few important corollaries of the theorem.
Corollary 1.4. (Integrals of closed forms over boundaries) Suppose that $M$ is a compact oriented smooth $n$-manifold with boundary. If $\omega \in \Omega^{n}(M)$ is a closed form, then

$$
\int_{\partial M} \omega=\int_{M} d \omega=0
$$

Corollary 1.5. (Integrals of exact forms) If $M$ is a compact oriented smooth manifold without boundary, then the integral of every exact form over $M$ is zero:

$$
\int_{M} d \omega=\int_{\partial M} \omega=0
$$

Corollary 1.6. (Submanifolds) Let $M$ be a smooth n-manifold (with or without boundary). Let $S \subseteq M$ be an oriented compact smooth $k$-submanifold (without boundary). Let $\omega \in \Omega_{c}^{k}(M)$ be closed. If $\int_{S} \omega \neq 0$, then the following holds:
(1) $\omega$ is not exact on $M$.
(2) $S$ is not the boundary of an oriented compact smooth submanifold with boundary in $M$.

Definition 1.7. In a manifold $M$, a regular compact domain is a set $D \subset M$, which is compact and has the property that for each $p \in \partial D$, there is a chart $(U, \phi)$ of $M$ containing $p$ such that

$$
\phi(U \cap \partial D) \subset \partial \mathbf{H}^{n} \quad \phi(U \cap D) \subset \mathbf{H}^{n}
$$

Example 1.8. The closed 1-form

$$
\omega=\frac{(x d y-y d x)}{x^{2}+y^{2}}
$$

has a nonzero integral over $\mathbf{S}^{1}$. Moreover, it is not exact on $\mathbf{R}^{2} \backslash\{0\}$. The preceding corollary also tells us that $\mathbf{S}^{1}$ is not the boundary of a compact regular domain in $\mathbf{R}^{2} \backslash\{0\}$.

Theorem 1.9. (Green's theorem) Suppose that $D$ is a compact regular domain in $\mathbf{R}^{2}$, and $P, Q$ are smooth real valued functions on $D$. Then

$$
\int_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\int_{\partial D} P d x-Q d y
$$

Proof. We apply the Stokes theorem to the form

$$
P d x+Q d y \in \Omega^{1}(D)
$$

