Distance Vector Routing




Contents

1. Distance vector: theory
2. Distance vector: practice
3. Braess paradox

Textbook f’ﬁ“

"J"” .") ———

Section 5.1.1, The control plane

Q



1. Distance Vector: Theory

What it does: it computes shortest paths to all destinations
Cost of a path = sum of the cost of network links along the path
Cost of a link is setup by configuration
Shortest path = path whose cost is minimal
Distance from node A to node B = cost of a shortest path from Ato B

How it works
uses the “Distributed Bellman-Ford” algorithm

Fully distributed
Using as only information the distances from self to all destinations



The Centralized Bellman-Ford Algorithm

Algorithm BF-C

input: a directed graph with links costs A(i,j); assume A(i, j)>0
and A(i,j) = oo when nodesiand j are not connected.

output: vector p s.t. p(i)= cost of best path from node i to node 1

p°(1) =0, p°@) =ofori=1
fork = 1,2, ... do
() = min[AGj) + ()] for i+ 1
JE

p (1) =0
until p* = p*1
return(p®)




p°(1) =0, p°@() =cofori =1

Example: shortest paths to node 1: run

fork=1,2,... do

BF-C for k =1 p () = I}lip[fl(i,j) +pfTt(D]fori # 1
pk(1) =0

until p* = pk-1 BE-C
0(3) = (1) =0 ( ;91(3) =1 ’ return(p)
& L ‘




Message Passing Interpretation of Bellman-Ford

00 1 =" 10
E— __ p°(1) =0, p°@) =ocofori #1
° fork=1,2,.. do
“(0) = min[AQ,)) + P (D]
5 p“(1) =0
gk _ ok
until p* = pk~1

: return(p¥)

o0 5 ~_

With BF-C it is as if :

at iteration k, node i receives from neighbors j their previous costs p*~1(j) and
updates own cost by picking the best

BF-C can be interpreted as a synchronous message passing algorithm

synchronous = nodes wait until iteration k — 1 is finished before starting
iteration k



p°(1) =0, p°@() =cofori =1

Example: shortest paths to node 1: ok =12 do
p*(1) = min[AGL, ) + p*=1 ()] for i # 1
run BF-C, k = 2,3 s

0 until p* k= pk'lBF_C BF-C
(B.) = (1) =0 1(3) =1 return(p”)
& L ‘




At which k does the algorithm stop ?

(i.e. what is the smallest k such that p* = p*~17?)

o0 1 0
6
C B—21(1
N\ 2/ \2 %
k=1
£
o 5

SEa,




Solution

Answer D: p3 = p*; algorithm stops at k = 4

p(C)=4




Correctness of BF-C

Theorem 1

Algorithm BF-C

input: a directed graph with links costs A(i,j); assume A(i, j)>0
and A(i,j) = o when nodes i and j are not connected.

output: vector p s.t. p(i)= cost of best path from node i to node 1

po(l) =0, po(i) =oofori+1
fork =1,2,... do
p*() = min[AG, /) +p = ()] for i # 1
L

pk(1) =0
until p* = pk-1
return(p¥)

1.I1f the network is fully connected, BF-C stops at the latest at k = n (where
n = number of nodes) and outputs the distance along shortest path from i to

1, for all'i

2. p" (i) is the distance from i to 1 in at most k hops
3.The next hop along a shortest path from i Bl 1 to 1 is found by nextHop(i) €

Argmmjii [A(l']) + p(])]

10



Computation of shortest path tree

3. The next hop along a shortest path from i # 1 to 1 is found by
nextHop(i) € Argmin,; [A(i,j) + p(j)]

When algorithm has converged, the next
hop of node C is obtained by looking for
j that minimizes A(C,j) + p(j)

j=B: 6+1=7

j=E: 1+4+3=4

Otherj: o

Argminis{j = E}

nextHop(C) = E

11



Assume we start from other initial
conditions. What will happen ?

PUD-=0—p2=—ooforimi— 1 10 0

repl’aced by values on graph — C 6 /B\ 1 1
fork =1,2,... do
p (D) = min[AG, /) +p*~" (D] for i # 1 1\ 2 2
J#i
pk(l) =0 k=0 E
until p* = pk-1
return(p®) 1 1

The algorithm converges to the correct distances
The algorithm does not converge
The algorithm converges but not to the correct distances

o 0w >

| don’t know

12



Assume we break some links and start
from these initial conditions. What will

happen ?
4 1 0
p°(1) =0, p°(i) = oofori # 1 c 81 (4
replaced by values on graph — 0 5
fork =1,2,.. do 1 Qo 4
k . _ . . k_l . .
p“(i) = I}lil?[A(l,]) +p ()] fori # 1 E D
p¥(1) =0 3
until p* = pk-1
return(p’)
A. The algorithm converges to the correct distances
B. The algorithm does not converge
C. The algorithm converges but not to the correct distances
D. Idon’t know

14



Algorithm BF-C
input: a directed graph with links costs A(i,j); assume A(i, j)>0
and A(i,j) = o when nodes i and j are not connected.

Correctness of BF-C output: vector p s.t. p(i)= cost of best path from node i to node 1

with arbitrary initial PUD = 0—pUD-=oforit L

p" (i) = any nonnegative value

condition and arbitrary |frx=12 .. do

network pH(D) = min[AG, ) +p*7 ()] for i # 1
p¥(1) =0
until p* = pk-1
return(p®)
Theorem 2

1.If there is a path from i to 1, then for k large enough p* (i) = p(i)Vi where p(i) is the
distance from i to 1. It follows that if the network is fully connected, BF-C with arbitrary
initial conditions termlnates and eventually computes the correct distances. However, in
general, when k is small p*(i) is not the distance from i to 1 in < k hops.

2.If there is no path from i to 1 then lllm p* (i) = . It follows that if the network is not
fully connected, BF-C does not terminate (“count to infinity”).

16



Proof

We do the proof assuming all nodes are connected.

1.

Let p* be the vector p{i], i=2,.... Let B be the mapping that transforms an array x[i]._, into the array Bx defined fori# 1
by
Bx[i]=min i#i, ] ¢1[A(i,j) +X(j)]
Let b be the array defined fori# 1 by
blil= A(i,1)

The algorithm can be rewritten in vector form as

(1) p*=Bp*tAb
where A is the pointwise minimum
Eqg (1) is a min-plus linear equation and the operator B satisfies B(x Ay)= Bx ABy. Thus, Eq(1) can be solved using min-plus
algebrainto

(2) p*=BkpO AB¥Ib A ... ABb AD
Define the array e fori # 1 by e[i]= oc. Let p%=e. Eq (2) becomes

(3) p* =BKIb A ... ABb A b. Now we have the Bellman Ford algorithm with classical initial conditions, thus, by Theorem
1:

(4)fork>n-1:B“1b A ... ABbAb=q
where q[i] is the distance from i to 1.
We can rewrite Eq(2) for k>n-1 as

(5) p*=Bp° A q
BpO[i] can be written as A[i,i;]+ Aliy,i,]+ ...+ Al 1,i ]+ pli,] thus

(6) BkpO[i] = k a, where ais the minimum of all A[i,j]. Thus B*p[i] tends to oc when k grows. Thus for k large enough,
BkpCis larger than g and can be ignored in Eq(5). In other words, for k large enough :

(6) p* =g

17



Distributed Bellman Ford

BF-C can be used to compute p(i) i.e. find the shortest path. However, this is not its main
interest, because there is a better algorithm (Dijkstra) that can be used in a centralized
way.

But: it can be distributed as follows.

Distributed Bellman-Ford Algorithm , BF-prelim

node i maintains an estimate q (i) of the true distance p(i) to node 1;
node i also keeps a record of latest values g (j) for all neighbors j
initial conditions are arbitrary but q(1) = 0 at all steps;

from time to time, i sends its value g (i) to all neighbours

when i receives an updated value q(j) from neighbor j, node
[ recomputes q(i):

eq (1) q@ < min (AG) +a()

nextHop(i) is set to a value of j that achieves the min in eq(1)

This is asynchronous message passing, i.e. nodes do not wait for complete rounds of
iteration to be performed.



Correctness of BF-prelim

Theorem: Assume at least one message is reliably sent to all neighbors by
every node every T time units and the network is fully connected. BF-
prelim converges to the same result as the centralized version BF-C (i.e. to
the correct distances) in < mT time units, where m is the number of steps
performed by BF-C with same initial conditions.

Distributed Bellman-Ford Algorithm , BF-prelim

node i maintains an estimate q (i) of the true distance p(i) to node 1;
node i also keeps a record of latest values g (j) for all neighbors j
initial conditions are arbitrary but q(1) = 0 at all steps;

from time to time, i sends its value q(i) to all neighbours

when i receives an updated value q(j) from neighbor j, node
i recomputes q(i):

eq (1) 4@ < min (AG) +q()

nextHop(i) is set to a value of j that achieves the min in eq(1)




Distributed Bellman-Ford BF-prelim

A possible run of algorithm BF-prelim. The
table shows the successive values of q (i)

(@]
O

ali)

1->B
B->D
B->C
C->E
5 )

< B->E :

E->B
E->C

g(E) « min(1+2,7+1,3+1) =3

OO0 OO0 OO0 O O Ofr
PP RPRRRRRRQ|m
BN NNNNNR 88
W W wwwwwwg 8
W w wbhpoog ] 8 8™

Converged !



Super-Duper Bellman-Ford

BF-prelim requires a node to remember all estimates q(j) received from all
neighbors j, even for j not on the shortest path to destination; can we do
better ?

A possible modification would be to replace eq(1) by

Super-Duper Bellman-Ford:

when i receives an updated value g(j) from neighbor j, node i recomputes q(i):
eq (1s) q() « min {AG,J) +q(), q()}

Node i now needs to store only its own estimate q (i)

Q. does this work ?

21



Is Super-Duper Bellman-Ford correct ?

when i receives an updated value q(j) from neighbor j, node i recomputes q(i):
eq (1s) q(i) <« min{A(,j) +q(), q()}

A. Yes, regardless of initial condition

B. Only ifinitial conditions are q(i) =
,i # 0and q(1) = 0 attime 0

C. It may fail, even with initial conditions
asin 2.

D. | don’t know

22



Distributed Bellman-Ford

Requires only to remember distance from self to destination + the best
neighbor (nextHop(i))

and works for all initial conditions

Distributed Bellman-Ford Algorithm, BF-D
node i maintains an estimate q (i) of the distance p(i) to node 1;
node i remembers the best neighbor nextHop(i)

initial conditions are arbitrary but g(1) = 0 at all steps;
from time to time, i sends its value q (i) to all neighbors

when i receives an updated value q(j) from j, node i recomputes q(i):
eq (2) if j == nextHop(i)

then q(i) < AG, ) +q()

else q(i) « min(A(i,j) + q(j), q(i))
if eq(2) causes q (i) to be modified, nextHop(i) « j




Distributed Bellman-Ford BF-D

A possible run of algorithm BF-D. The
table shows the successive values of g(i) and

1-1 0 nextHop
[ 1 B C D E

0 10C 1E 6E 1C
1>B|1 0 1-1 1E 6E 1C
B->D| 0 1-1 1E 3B 1C
B->C|] O 1-1 1E 3B 1C
B->E| O 1-1 1E 3B 1C

0 1-1 1E 3B 1C
C>E A0 1-1 1E 3B 2C

q(E) «1+1=2

25



Distributed Bellman-Ford BF-D, cont’d

nextHop(E) =€~ B

q(E) < min(1+2,4)=3
nextHop(E) < B

A possible run of algorithm BF-D. The
table shows the successive values of q (i)

[ 1 B C D E
0 10C 1E  6F 1C
1>B|0 1-1 1E 6E 1C
B>D| 0 11 1E 3B 1C
B>clo 11 1 3B 1C
B->E|0 11 1E 3B 1C
D>E|0 11 1 3B 1C
c>elo 11 1E 3B  2C
Es>clo 11 28 3B 2C
c>E|lo 11 28 3B 3C
es>clo 1.1 38 3B 3C
c>E|o0 11 3 3B 4C
Esclo 1-1 48 3B 4c
0 1-1 4E 3B 3B

26



Correctness of BF-D

Theorem: Assume at least one message is reliably sent to all neighbors by
every node every T time units and the network is fully connected. BF-D
converges to the same result as the centralized version BF-C (i.e. to the
correct distances) in < mT time units, where m is the number of steps
performed by BF-C with same initial conditions.

Comment: The main difference with BF-prelim is that eq(2) replaces eq(1). Assume we use BF-D, and we start
from a condition such that q(i) is indeed equal to the minimum given by eq (1) (which is what, intuitively, is true
most of the time).

When j is not equal to nextHop(i), both eq(1) and eq(2) have the same effect: the new value of q(i) is the same in
both cases. In contrast, if j == nextHop(i), then eq (2) sets (i) to the new value A(i,j)+q(j), whereas eq(1) sets it to

MIN; eighbor (A(LJ)+A())). Eq(2) provides an upper bound on eq(1), in this case. It turns out that the algorithm still
works, by the same mechanism that makes the algorithm work even when the initial conditions are arbitrary.
Indeed, node i will send its new value to all remaining neighbors, who will in turn do an update and eventually,
node i will receive values of q(j) that will correct the problem. In other words, if the new value of q(i) is too high
(compared to what would be obtained with eq (1)), this is repaired in one round of exchanges with the
neighbors.

27



Recap

Bellman-Ford, Distributed (BF-D), allows a node to compute distances to
one destination

Stored information is:
Next hop to destination
Distance to destination

BF-D works by message passing: every node informs its neighbors of its
current distance

BF-D works even when initial conditions are not as expected (which occurs
due to topology changes)

If destination is unreachable (distance = o) then the algorithm counts to
infinity.

28



2. Distance Vector routing in practice: RIP

Distance vector routing in RIP = based on BF-D

BF-D is run in all routers for all possible destination prefixes

Router i computes shortest path and next hop for all network prefixes n
that it heard of.

Initially: D(i,n) = 1 if i directly connected to n and implicitly D(i,n) = +o0 for
any n that was never heard of.

Node j receives from neighbour k latest values of D(k,n) for all n (this is the
distance vector). Node i computes the best estimates according to
algorithm BF-D

1
(== D(1,n)

i %§0@%gj n
c(i,m)
= D(m,n)

———

29



Periodic Updates

Updates are sent periodically (e.g. every 30 sec)

If neighbour k is no longer present, node i will no longer receive hello
messages, and after a timeout, this has the same effect as if node / would
receive the message from k: D(k,n) = oo for all n. Then algorithm BF-D is
run:

It follows that if k was the next hop to n, then i declares n unreachable.

1
(== D(1,n)

/ \x
|%\C("k)$ (( D(k,n) m%‘i—_n
(e D(m,n)

———

30



Example 1

All link costs = 1

A

net dist nxt

nl 1 nl A
n4 1 n4d ,A

D

net dist nxt

n3 1 n3,D
n4 1 nd,D
m3 1 m3,D

né

nl

n3

m3

B

net dist nxt

nl 1 nl,B
n2 1 n2,B

C

net dist nxt
n2 1 n2,C
n3 1 n3,C
ml 1 ml,C
m2 1 m2,C

31



Example 1

All link costs = 1

A

net dist nxt

nl 1 nl A
n4 1 n4d ,A

D

net dist nxt

n3 1 n3,D
n4 1 nd,D
m3 1 m3,D

from A
nl 1
n4 1

né

nl II

n3 m2

m3

o)
IS
o O O

B

net dist nxt

nl 1 nl,B
n2 1 n2,B
n4 2 nl, A

C

net dist nxt
n2 1 n2,C
n3 1 n3,C
ml 1 ml,C
m2 1 m2,C
n4 2 n3,D
m3 2 n3,D

32



Example 1 All link costs =1 net dist nxt

A B [nl 1 nl,B

n2 1 n2,B

net dist nxt n3 2 n2,C

nl 1 nl,A n4 2 nl A

nd 1 nd A ml 2 n2,C

m2 2 n2,C

m3 3 n2,C

from C

[] nl II n2 1

n3 1

n4 n2 ml 1

n3 m2 m2 1

Eﬂ !!-——— n4 2

D c m3 2
net dist nxt m3 ml‘ net dist nxt
n3 1 n3,D n2 1 n2,C
nd 1 n4,D n3 1 n3,C
m3 1 m3,D ml 1 ml,C
m2 1 m2,C
n4 2 n3,D
m3 2 n3,D




Example 1 - Final

net dist nxt

nl
n2
n3
n4
ml
m2
m3

NWwWwEFELrDNMNDMNDR

nl,A
nl,B
n4,D
n4 A
n4,D
n4,D
n4,D

net dist nxt

nl
n2
n3
n4
ml
m2
m3

R NDNNMNNMNEDNDN

n4d ,A
n3,C
n3,D
n4,D
n3,C
n3,C

m3,D

net dist nxt
B [nl 1 nl,B
n2 1 n2,B
n3 2 n2,C
n4 2 nl A
ml 2 n2,C
m2 2 n2,C
m3 3 n2,C
IEI nl
n4 n2
|§| — |net dist nxt
m3 ml‘ nl 2 n2,B
n2 1 n2,C
C n3 1 n3,C
ml 1 ml,C
m2 1 m2,C
n4 2 n3,D
m3 2 n3,D

34



Example 1 — Router Failure
All link costs =1

We show only the router in the next hop field

net dist nxt
D
nl 2 A
n2 2 C
n3 1 D
n4 1 D
ml 2 C
m2 2 C
m3 1 D

nl

n3

m3

B
n2
_
ml‘
C

net dist nxt

nl 1 B
n2 1 B
n3 2 C
n4 2 A
ml 2 C
m2 2 C
m3 3 C

net dist nxt

nl 2 B
n2 1 C
n3 1 C
ml 1 C
m2 1 C
n4 2 D
m3 2 D

35



Example 1 -

D
timeout

Failure
All link costs = 1

net dist nxt

sl—"2" T
n2 2 C
n3 1 D
n4 1 D
ml 2 C
m2 2 C
m3 1 D

nl

n3

m3

B
n2
m2
_
ml‘
C

net dist nxt

nl 1 B
n2 1 B
n3 2 C
_nd 22—
ml 2 C
m2 2 C
m3 3 C
net dist nxt
nl 2 B
n2 1 C
n3 1 C
ml 1 C
m2 1 C
n4 2 D
m3 2 D

timeout

36



Example 1 - Failure
All link costs =1

B
:>E3: nl II
n4 n2
net dist nxt n3 m2
: B -
nl 3 C
n2 2 C m3 ml ‘
n3 1 D From C:
n4d 1 D nl 2 C
ml 2 C : n2 1
m2 2 C n3 1
m3 1 D ml 1
m2 1
n4 2
m3 2

net dist nxt

nl 1 B
n2 1 B
n3 2 C
ml 2 C
m2 2 C
m3 3 C

net dist nxt

nl 2 B
n2 1 C
n3 1 C
ml 1 C
m2 1 C
n4 2 D
m3 2 D

37



Example 1 - After Failure

All link costs =1 net dist nxt

B nl
n2
n3
n4
ml
m2
m3

WNDMNMNWNDRRE
N0 ww

net dist nxt
D net dist nxt
nl 3 C
n2 2 C nl 2 B
n3 1 D n2 1 C
n4 1 D C n3 1 C
ml 2 C ml 1 C
m2 2 C m2 1 C
m3 1 D n4 2 D
m3 2 D




All link costs =1

dest link cost

a local 1

b 11 2

Cc 11 3

d 13 2

e 13 3
g —L&

Example 72 Assume RIP has converged

B

dest link cost

13

. d-m

(L

a 13 2
b 13 3
c 16 3
d local 1
e 16 2

dest link cost

a 11 2
b local 1
c 12 2
d 14 3
e 14 2
s -
12
14 C‘
15 \\
&I L
/ dest link cost
Gi a 16 3
b 14 2
c 15 2
d 16 2
e local 1

C

dest link cost

a 12 3
b 12 2
c local 1
d 15 3
e 15 2

39



Links |1 and |6 fail simultaneously,

Example 2

D detects failure
All link costs = 1

B
dest link cost dest link cost
a local 1 a 11 2
b 11 2 b local 1
c 11 3 c 12 2
d 13 2 d 14 3
e 13 3 {4 e 14 2 C
A % B \«@P dest link cost
q — —
12 a 12 3
13 14 C‘ b 12 2
dv é 15 \ c local 1
—| D L E d 15 3
D / E L - 1= 5
dest link cost dest link cost
a 13 2 e a 16 3
b 13 3 b 14 2
c NR 0 c 15 2
d local 1 d 16 2
e NR 0 e local 1




Example 2 : Zoom on A and B

A Alllink costs =1

dest link cost

local 1
11 2
11 3
13 2
13 3

[ o P o T o i}

from A:

dest cost A

NS

1

0o e

,d 2
,e 3

13

s
f_—

v
b D

£

13 2
13 3
13 4
local 1
13 4

[ R o P o TR o i

dest link cost

A detects failure of £4

dest link cost

a local 1
b NR 0
c NR 00
d 13 2
e 13 3

1

D

D

I
A
#

13 2
13 3
13 4
local 1
13 4

(I o PR o TN o i

dest link cost

A

dest link cost

local 1
13 4
13 5
13 2
13 5

[ T o P o T o S 1

A from D:

dest cost

d 1

D

a 2
b 3
c 4

D €

*s ke

a 13 2
b 13 3
c 13 4
d local 1
e 13 4

dest link cost

41



A Alllink costs =1

dest link cost

local 1
13 4
13 5
13 2
13 5

(1 o P o B o AV}

from A:
dest cost

a 1
2

d
b
c,

1

4
e 5 D

D

Ks K

13 2
13 3
13 4
local 1
13 4

[ o P o B o i 1}

dest link cost

After processing this update,
what is the distanceat Dto e ?

G m m o O ®w >F

1
2
3
4
5
6
|

don’t know

42



Count to Infinity

A Alllink costs =1

1

dest link cost
a local 1
b 13 4
c 13 5
d 13 2
e 13 5

from A:

dest cost

a 1

d 2

b 4
pyYc,e 5

D

K ke

[ o R o TR o i

13
13
13

local

13

2
5
6
1
6

dest link cost

A

local 1
13 6
13 7
13 2
13 7

(1 o P o T o i}

dest link cost

A from D:
dest cost
2

(o T o Y o TR )

1
5
D ,e 6

1

D

K ke

13
13
13
local
13

[ I o PR ol o i

dest link cost

2
5
6
1
6

A

[ I o P o T o i

local
13
13
13
13

1
6
7
2
7

dest link cost

a
d
b

pV¥c,e

from A:
dest cost

1

2
6
7

1

D

K ke

[ I o P o T o

13
13
13

local

13

(o oI o o JEEN B \V)

dest link cost

44



Conclusion from Example 2

The costs to b,c,e grow unbounded “Count to Infinity”
the true costs are infinite
this is the expected behaviour of Bellman-Ford
RIP enforces convergence by setting co = large number = 16

Several optimizations (route poisoning, split horizon) exist to accelerate
convergence:

45



RIP optimizations:
Route poisoning and Split Horizon

Two practical heuristics in order to
Avoid count to infinity
Reduce occurrence of ping-pong loops

Route poisoning : if A detects that route to x is not reachable, A immediately
sends «distance to x = co» to neighbours

Further, when a distance = oo is received for x, any further update about x is
ignored for some time (holddown timer)

Split Horizon : if A routes packets to x via B, A does not announce this route to B

46



Example 2
with Route Poisoning and Split Horizon

a Alllink costs =1

dest link cost
a local 1

b 11 2

c 11 3

d 13 2

e 13 3
from D

d 1

c, e: @

D (i,'—' D

A

13

D p Qo

dest link cost

13
13
NR
local
NR

2

3
(0%
1
00

B

dest link cost

O Qa0 b e

11
local
12
14
14

2
1
2
3
2

14

‘

&
/
e

D detects failure

D immediately sends update to A-wi

routes (oo distan
Routes to a and

I

12

15

E

L

Cc

dest link cost

12 3
12 2
local 1
15 3
15 2

[( o P o T o i

es)

are not advertized

| dest link cost

th poisoned

(split horizon)




a All link costs = 1

dest link cost

a local 1

b 11 2

c 11 3

d 13 2

e 13 3
from D:
d 1 A
c, e: @

[
w

o~ S

S =

D

D

£

a 13 2
b 13 3
c NR 0
d local 1
e NR (%)

dest link cost

After processing this update,
what are the distances at A

tocand e?
A. d(c)=3,d(e) =3
B. d(c) =o,d(e)=3
C. d(c)=3,d(e) =
D. d(c) =o,d(e) =
E. None of the above
F. Idon’t know

48



Example 2 with Route poisoning and Split Horizon

a Alllink costs =1

dest link cost

local 1
11 2
11 3
l3 2

(0.0)

[
w

~ >k

[ =

a
b
c
d
e
from D:
A
c, e: ™
D

*

dest link cost
a 13 2
b 13 3
c NR 0
d local 1
e NR 0

a A detects failure

dest link cost

a local 1
b NR
c NR
d
e

8 M8 8

NR

from A:

a 1 A

b,c,e

1

B D

I
A
#

13 2
NR 0
NR 0
local 1
NR 0

(1 o YN 0 T o I 1)

dest link cost

No count to
infinity

After some time,
the oo distances
are removed by
timeout

50



RIP (Routing Information Protocol)

Implements BF-D
oo = 16; therefore network span limited to 15

Split horizon and route poisoning
UDP port 520 and multicast address 224.0.0.9 / ff02::9

Sends distance vector update every 30 seconds (by default) or when change is detected
(“triggered update”)
Route not announced during 3 minutes becomes invalid

Authentication by shared secret

No configuration required (all costs equal to 1).

51



Other Distance Vector Protocols

FIGRP (Cisco):

uses Bellman-Ford prelim + additional heuristics to avoid loops
(therefore no limit of 15 as in RIP)

keeps a Routing Information Base (RIB) which is much more than with
RIP but less than with OSPF

also uses dynamic metrics

Babel, AODV add a sequence number put by destination to avoid routing
loops and count to infinity (Destination Sequenced Distance Vector).

Spanning Tree Protocol (STP, for bridges) computes the distance to the
root using Bellman Ford.

OSPF is link state in one area but uses distance vectors between areas.
Count to infinity does not exist here (no area loop: areas must be
connected in a logical star topology, centred on area 0).

52



3. Dynamic Metrics
Does a routing protocol maximize network utility ?

Yes, because it minimizes the cost to destination

Yes if TCP is used because it ensures fairness
No

| don’t know

o0 @

53



Dynamic Metrics

Some routing protocols use dynamic metrics for improving over shortest path
high load on a link => high cost => link is less used

Example (Cisco)
Cost of a link is
m = [K,*Trans + (K,*Trans )/(256-load) + K;*delay] * [K</(Reliability + K,)]

Trans = 10000000/Bandwidth (time to send 10 Kb)

delay = (sum of Delay)/10
default: K1=1, K2=0, K3=1, K4=0, K5=0

But there may be some issues — Braess paradox

55



Least Delay Routing and Wardrop Equilibirum

Assume all flows pick the route

with shortest delay (ms) traffic on this link

Assume parallel paths exist and (Gb/s)
flows can make use of them

Eventually, there will be an V

equilibrium (called “Wardrop Delay =48 + b,

Equilibrium”) such that delay is
equal on all competing routes

Delay =2 + 1 Linkc 3
What is the Wardrop _
equilibrium for this network ? 7 :
Delay =2 4/10 b,
by = 6 Gb/s : k4

Delay =48 + b,

56



Now introduce link 5

Link 5 has delay function 6 + bs i.e. short delay and high capacity
There are now 3 paths: 13, 154 and 24
Assume we start from previous equilibrium
by =b, =b;=b,=3,bs =0
Is this a Wardrop equilibrium ? Delay =48 + b4
b, = 3 Gb/s
Delay =2 + 10 (b3 + bs) /Rbs = U /
by + b , b/s DOy =6 + by
by =6 Gb/ Delay ™ + 10(%, + b:)
b, = 6 Gb/s b, = 3 Gbls b, + bs = 3 Gb/s

Delay =48 + b,

58



What is the Wardrop
Equilibrium now ?

delay equations
50 + 11b3; + 10bs = 50 + 11b, + 10bg
= 10 + 10b; + 10 b, + 21 bg
total flow
by + b, + b3 = 6

Delay =48 + b;

Solution : by = bg = b, = 2 Gb/s

_ Delay =2 4+ 10 (b3 + bs)
Delay now is 92 ms on all routes

b3+b5:

bo = 6 Gb/s

Delay =48 + b,

60



Braess Paradox

With shortest delay routing:

disable link 5: delay = 83 ms; enable link 5 : delay =92 ms
Adding capacity made things worse

This is called Braess paradox

Shortest delay routing is not optimal Delay =48 + b,

Delay =2 + 10 (b3 + bs)

2 + bs)

Delay =48 + b,

61



Optimal Routing

One can change the objective of routing: instead of computing shortest paths, one can
solve a global optimization problem maximizing a utility function:

minimize total delay subject to flow constraints
this is a well posed optimization problem
the optimal solution depends on all flows

but it can be implemented in a distributed algorithm similar to TCP congestion
control, see [BertsekasGallager92]

This can be solved using an offline optimization procedure that computes optimal link
costs and downloads them into all routers.

62



Conclusion

Distance vector is simple and smart: Fully distributed, little information
stored, little or zero configuration.

But: relatively slow
Not suited for large and complex networks
Link State protocols are used instead

Shortest Path routing is better than STP but is generally not optimal.
Optimal routing requires another layer of optimization.

Taking link delay as link cost is also not optimal and is subject to Braess
paradox.

42



