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Problem 1. Recall that the minimum distance is also given by the weight of the minimum
weight codeword. Now observe that there exists a codeword x of weight w iff xH = 0 where
H is the parity-check matrix with n rows. This is equivalent to saying that some w rows
of H are linearly dependent. We then know that there exist d rows that are linearly
dependent. However, no combination of d − 1 rows or less are dependent since this case
would give rise to a codeword of weight less or equal to d− 1. This concludes the proof.

Problem 2.

(a) At the first step, we can choose any non-zero column vector with r coordinates. This
will be the first row of our n× r parity-check matrix. Now suppose we have chosen i
rows so that no d− 1 are linearly dependent. They are all non-zero rows. There are
at most (

i

1

)
+ · · ·+

(
i

d− 2

)
distinct linear combinations of these i rows taken d− 2 or fewer at a time.

(b) The total number of r-tuples (include the all-zero one) is 2r. We can then choose
a new row different from the previous ones, linearly independent from the previous
ones, and keep the property that every d− 1 rows are independent.

(c) We can iterate the procedure and we keep doing so as long as

1 +

(
i

1

)
+ · · ·

(
i

d− 2

)
< 2r

where the first term counts the all-zero vector. At the last step, we can do so iff

1 +

(
n− 1

1

)
+ · · ·

(
n− 1

d− 2

)
< 2r.

(d) Multiply both sides of the previous inequality by M = 2k gives the result since
r = n− k.

Problem 3. Let S0 be the set of codewords at Hamming distance n from x0 and S1 be
the set of codewords at Hamming distance n from x1. For each y in S0, note that x1 +y is
at distance n from x1, and thus {x1 + y : y ∈ S0} ⊂ S1. Similarly, {x1 + y : y ∈ S1} ⊂ S0.
These two relationships yield |S0| ≤ |S1| and |S1| ≤ |S0|, leading to the conclusion that
|S0| = |S1|.

Problem 4.



(a) We have

W−(y1, y2|u1) = PY1,Y2|X1⊕X2(y1, y2|u1) =
PY1,Y2,X1⊕X2(y1, y2, u1)

PX1⊕X2(u1)
(∗)
= 2PY1,Y2,X1⊕X2(y1, y2, u1)

= 2
∑

u2∈{0,1}

PY1,Y2,X1⊕X2,X2(y1, y2, u1, u2)

(∗∗)
= 2

∑
u2∈{0,1}

PY1,Y2,X1,X2(y1, y2, u1 ⊕ u2, u2)

= 2
∑

u2∈{0,1}

PY1,Y2|X1,X2(y1, y2|u1 ⊕ u2, u2)PX1,X2(u1 ⊕ u2, u2)

= 2
∑

u2∈{0,1}

W (y1|u1 ⊕ u2)W (y2|u2)
1

22

=
1

2

∑
u2∈{0,1}

W (y1|u1 ⊕ u2)W (y2|u2),

where (∗) follows from the fact that if X1, X2 are independent and uniform then
X1 ⊕X2 is also uniform. (∗∗) follows from the fact that

(X1 ⊕X2 = u1 and X2 = u2)⇔ (X1 = u1 ⊕ u2 and X2 = u2).

(b) We have

W+(y1, y2, u1|u2) = PY1,Y2,X1⊕X2|X2(y1, y2, u1|u2) =
PY1,Y2,X1⊕X2,X2(y1, y2, u1, u2)

PX2(u2)

= 2PY1,Y2,X1⊕X2,X2(y1, y2, u1, u2)

(∗)
= 2PY1,Y2,X1,X2(y1, y2, u1 ⊕ u2, u2)
= 2PY1,Y2|X1,X2(y1, y2|u1 ⊕ u2, u2)PX1,X2(u1 ⊕ u2, u2)

= 2W (y1|u1 ⊕ u2)W (y2|u2)
1

22

=
1

2
W (y1|u1 ⊕ u2)W (y2|u2),

where (∗) follows from the fact that

(X1 ⊕X2 = u1 and X2 = u2)⇔ (X1 = u1 ⊕ u2 and X2 = u2).
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(c) We have

Z(W+) =
∑

y1,y2∈Y,
u1∈{0,1}

√
W+(y1, y2, u1|0)W+(y1, y2, u1|1)

=
1

2

∑
y1,y2∈Y,
u1∈{0,1}

√
W (y1|u1 ⊕ 0)W (y2|0)W (y1|u1 ⊕ 1)W (y2|1)

=
1

2

( ∑
y1,y2∈Y

√
W (y1|0⊕ 0)W (y2|0)W (y1|0⊕ 1)W (y2|1)

)

+
1

2

( ∑
y1,y2∈Y

√
W (y1|1⊕ 0)W (y2|0)W (y1|1⊕ 1)W (y2|1)

)

=
1

2

( ∑
y1,y2∈Y

√
W (y1|0)W (y2|0)W (y1|1)W (y2|1)

)

+
1

2

( ∑
y1,y2∈Y

√
W (y1|1)W (y2|0)W (y1|0)W (y2|1)

)

=
1

2

(∑
y1∈Y

√
W (y1|0)W (y1|1)

)(∑
y2∈Y

√
W (y2|0)W (y2|1)

)

+
1

2

(∑
y1∈Y

√
W (y1|0)W (y1|1)

)(∑
y2∈Y

√
W (y2|0)W (y2|1)

)

=
1

2
Z(W ) · Z(W ) +

1

2
Z(W ) · Z(W ) = Z(W )2.

(d) For every y1, y2 ∈ Y , we have:

W−(y1, y2|0) =
1

2

∑
u2∈{0,1}

W (y1|0⊕ u2)W (y2|u2) =
1

2

∑
u2∈{0,1}

W (y1|u2)W (y2|u2)

=
1

2
W (y1|0)W (y2|0) +

1

2
W (y1|1)W (y2|1) =

1

2
α(y1)α(y2) +

1

2
β(y1)β(y2)

=
1

2
(α(y1)α(y2) + β(y1)β(y2)),

and

W−(y1, y2|1) =
1

2

∑
u2∈{0,1}

W (y1|1⊕ u2)W (y2|u2)

=
1

2
W (y1|1⊕ 0)W (y2|0) +

1

2
W (y1|1⊕ 1)W (y2|1)

=
1

2
W (y1|1)W (y2|0) +

1

2
W (y1|0)W (y2|1) =

1

2
β(y1)α(y2) +

1

2
α(y1)β(y2)

=
1

2
(α(y1)β(y2) + β(y1)α(y2)).
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We have

Z(W−) =
∑

y1,y2∈Y

√
W−(y1, y2|0)W−(y1, y2|1)

=
1

2

∑
y1,y2∈Y

√(
α(y1)α(y2) + β(y1)β(y2)

)(
α(y1)β(y2) + β(y1)α(y2)

)
.

(e) For every x, y ≥ 0, we have x+ y ≤ x+ y + 2
√
xy = (

√
x+
√
y)2 which implies that√

x+ y ≤
√
x+
√
y. Therefore, for every x, y, z, t ≥ 0 we have:

√
x+ y + z + t ≤

√
x+ y +

√
z + t ≤

√
x+
√
y +
√
z +
√
t.

Therefore,

Z(W−)

=
1

2

∑
y1,y2∈Y

√(
α(y1)α(y2) + β(y1)β(y2)

)(
α(y1)β(y2) + β(y1)α(y2)

)
=

1

2

∑
y1,y2∈Y

√
α(y1)2γ(y2)2 + α(y2)2γ(y1)2 + β(y2)2γ(y1)2 + β(y1)2γ(y2)2

(∗)
≤ 1

2

∑
y1,y2∈Y

(√
α(y1)2γ(y2)2 +

√
α(y2)2γ(y1)2 +

√
β(y2)2γ(y1)2 +

√
β(y1)2γ(y2)2

)
=

1

2

( ∑
y1,y2∈Y

α(y1)γ(y2)

)
+

1

2

( ∑
y1,y2∈Y

α(y2)γ(y1)

)

+
1

2

( ∑
y1,y2∈Y

β(y2)γ(y1)

)
+

1

2

( ∑
y1,y2∈Y

β(y1)γ(y2)

)
,

where (∗) follows from the inequality
√
x+ y + z + t ≤

√
x+
√
y +
√
z +
√
t.

(f) Note that
∑
y∈Y

α(y) =
∑
y∈Y

β(y) = 1 and
∑
y∈Y

γ(y) = Z(W ). Therefore,

Z(W−) ≤ 1

2

( ∑
y1,y2∈Y

α(y1)γ(y2)

)
+

1

2

( ∑
y1,y2∈Y

α(y2)γ(y1)

)

+
1

2

( ∑
y1,y2∈Y

β(y2)γ(y1)

)
+

1

2

( ∑
y1,y2∈Y

β(y1)γ(y2)

)

=
1

2

(∑
y1∈Y

α(y1)

)(∑
y2∈Y

γ(y2)

)
+

1

2

(∑
y2∈Y

α(y2)

)(∑
y1∈Y

γ(y1)

)

+
1

2

(∑
y2∈Y

β(y2)

)(∑
y1∈Y

γ(y1)

)
+

1

2

(∑
y1∈Y

β(y1)

)(∑
y2∈Y

γ(y2)

)

=
1

2
1 · Z(W ) +

1

2
1 · Z(W ) +

1

2
1 · Z(W ) +

1

2
1 · Z(W ) = 2Z(W ).
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