# ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 

School of Computer and Communication Sciences

Problem 1. Suppose the alphabet $\mathcal{X}$ has $q$ elements and it forms a finite field when equipped with the operations + and $\cdot$. Let $\alpha_{0}, \ldots, \alpha_{m-1}$ be $m$ distinct elements of $\mathcal{X}$. We will describe the codewords of a block code $\mathcal{C}$ of length $n(n \geq m)$ as follows: a sequence $\mathbf{x}=\left(x_{0}, \ldots, x_{n-1}\right) \in \mathcal{X}^{n}$ is a codeword if and only if

$$
x\left(\alpha_{i}\right)=0 \quad \text { for every } i=0, \ldots, m-1
$$

where $x(D)=x_{0}+x_{1} D+\cdots+x_{n-1} D^{n-1}$.
(a) Show that the code $\mathcal{C}$ is linear.
(b) Let $g(D)=\prod_{i=0}^{m-1}\left(D-\alpha_{i}\right)$. Show that $\left(x_{0}, \ldots, x_{n-1}\right)$ is a codeword if and only if $x(D)=g(D) h(D)$, for some $h(D)$, and conclude that the code has $q^{n-m}$ codewords.

Suppose now that the $\alpha_{i}$ are have the form $\alpha_{i}=\beta^{i}$, i.e., $\alpha_{0}=1, \alpha_{1}=\beta, \ldots, \alpha_{m-1}=\beta^{m-1}$.
(c) Let $A$ be the $n \times m$ matrix

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \beta & \beta^{2} & \ldots & \beta^{m-1} \\
1 & \beta^{2} & \beta^{4} & \ldots & \beta^{2(m-1)} \\
1 & \beta^{3} & \beta^{6} & \ldots & \beta^{3(m-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \beta^{n-1} & \beta^{2(n-1)} & \ldots & \beta^{(n-1)(m-1)}
\end{array}\right]
$$

Show that the columns of $A$ are linearly independent.
Hint: Suppose they were dependent so that there is a column vector $\mathbf{u}=\left[u_{0} u_{1} \ldots u_{m-1}\right]^{T}$ such that $A \mathbf{u}=\mathbf{0}$. How many roots does $u(D)$ have?
(d) Show that the code has minimum distance $d=m+1$.

Hint: Part (c) says that the rank of the matrix $A$ is $m$.
Problem 2. Let $h_{2}(p)=-p \log p-(1-p) \log (1-p)$ denote the binary entropy function defined on the interval $\left[0, \frac{1}{2}\right]$. Note that on this interval $h_{2}$ is a bijection, so its inverse $h_{2}^{-1}:[0,1] \longrightarrow\left[0, \frac{1}{2}\right]$ is well defined. Define $p * q=p(1-q)+q(1-p)$ and let $\oplus$ be the XOR operation. Suppose $X_{1}$ and $X_{2}$ are two binary independent random variables with $H\left(X_{1}\right)=h_{2}\left(p_{1}\right), H\left(X_{2}\right)=h_{2}\left(p_{2}\right)$, where $0 \leq p_{1}, p_{2} \leq \frac{1}{2}$.
(a) Show that $H\left(X_{1} \oplus X_{2}\right)=h_{2}\left(p_{1} * p_{2}\right)$.
(b) Suppose that $\left(X_{1}, Y\right)$ is independent of $X_{2}$, where $Y$ is a random variable in $\mathcal{Y}$. For every $y \in \mathcal{Y}$, let $0 \leq p_{1}(y) \leq \frac{1}{2}$ be such that $H\left(X_{1} \mid Y=y\right)=h_{2}\left(p_{1}(y)\right)$. We again assume that $H\left(X_{2}\right)=h_{2}\left(p_{2}\right)$ and $0 \leq p_{2} \leq \frac{1}{2}$.
Show that $H\left(X_{1} \mid Y\right)=\sum_{y} h_{2}\left(p_{1}(y)\right) q(y), H\left(X_{1} \oplus X_{2} \mid Y\right)=\sum_{y} h_{2}\left(p_{2} * p_{1}(y)\right) q(y)$, where $q(y)=\mathbb{P}_{Y}(y)$ for every $y \in \mathcal{Y}$.
(c) Show that for every $0 \leq p_{2} \leq \frac{1}{2}$, the mapping $f:[0,1] \longrightarrow \mathbb{R}$ defined as $f(h)=$ $h_{2}\left(p_{2} * h_{2}^{-1}(h)\right)$ is convex.
Hint: The graph of $f(h)$ can be drawn by the parametric curve $p \rightarrow\left(h_{2}(p), h_{2}\left(p_{2} * p\right)\right)$ so it is enough to show that $p \rightarrow \frac{\frac{\partial}{\partial p} h_{2}\left(p_{2} * p\right)}{\frac{\partial}{\partial p} h_{2}(p)}$ is increasing in $0 \leq p \leq \frac{1}{2}$.
(d) Suppose $H\left(X_{1} \mid Y\right)=h_{2}\left(p_{1}\right), H\left(X_{2}\right)=h_{2}\left(p_{2}\right)$. Show that $H\left(X_{1} \oplus X_{2} \mid Y\right) \geq h\left(p_{1} * p_{2}\right)$.
(e) Suppose $\left(X_{1}, Y_{1}\right)$ is independent of $\left(X_{2}, Y_{2}\right)$ and $H\left(X_{1} \mid Y_{1}\right)=h_{2}\left(p_{1}\right), H\left(X_{2} \mid Y_{2}\right)=$ $h_{2}\left(p_{2}\right)$. Show that $H\left(X_{1} \oplus X_{2} \mid Y_{1}, Y_{2}\right) \geq h\left(p_{1} * p_{2}\right)$.

Problem 3. Suppose $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ are binary linear codes of block-length $n$. Denote the number of codewords of $\mathcal{C}_{i}$ by $M_{i}$ and the minimum distance of $\mathcal{C}_{i}$ by $d_{i}$. For $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ let $\langle\mathbf{u} \mid \mathbf{v}\rangle$ denote the concatenation of the two sequences, i.e.,

$$
\langle\mathbf{u} \mid \mathbf{v}\rangle=\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right) .
$$

Let $\mathcal{C}$ denote the binary code of block-length $2 n$ obtained from $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ as follows:

$$
\mathcal{C}=\left\{\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle: \mathbf{u} \in \mathcal{C}_{1}, \mathbf{v} \in \mathcal{C}_{2}\right\} .
$$

(a) Is $\mathcal{C}$ a linear code?
(b) How many codewords does $\mathcal{C}$ have? Carefully justify your answer. What is the rate $R$ of $\mathcal{C}$ in terms of the rates $R_{1}$ and $R_{2}$ of the codes $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ ?
(c) Show that the Hamming weight of $\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle$ satisfies

$$
w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle) \geq w_{H}(\mathbf{v}) .
$$

(d) Show that the Hamming weight of $\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle$ satisfies

$$
w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle) \geq \begin{cases}w_{H}(\mathbf{v}) & \text { if } \mathbf{v} \neq \mathbf{0} \\ 2 w_{H}(\mathbf{u}) & \text { else }\end{cases}
$$

(e) Show that the minimum distance $d$ of $\mathcal{C}$ satisfies

$$
d \geq \min \left\{2 d_{1}, d_{2}\right\}
$$

(f) Show that $d=\min \left\{2 d_{1}, d_{2}\right\}$.

Problem 4. For a given value $0 \leq z_{0} \leq 1$, define the following random process:

$$
Z_{0}=z_{0}, \quad Z_{i+1}=\left\{\begin{array}{ll}
Z_{i}^{2} & \text { with probability } 1 / 2 \\
2 Z_{i}-Z_{i}^{2} & \text { with probability } 1 / 2
\end{array} \quad i \geq 0\right.
$$

with the sequence of random choices made independently. Observe that the $Z$ process keeps track of the polarization of a Binary Erasure Channel with erasure probability $z_{0}$ as it is transformed by the polar transform: $\mathbb{P}\left(Z_{i}=z\right)$ is exactly the fraction of Binary Erasure Channels having an erasure probability $z$ among the $2^{i}$ BEC channels which are synthesized by the polar transform at the $i$ th level. The aim of this problem is to prove that for any $\delta>0, \mathbb{P}\left[Z_{i} \in(\delta, 1-\delta)\right] \rightarrow 0$ as $i$ gets large.
(a) Define $Q_{i}=\sqrt{Z_{i}\left(1-Z_{i}\right)}$. Find $f_{1}(z)$ and $f_{2}(z)$ so that

$$
Q_{i+1}=Q_{i} \times \begin{cases}f_{1}\left(Z_{i}\right) & \text { with probability } 1 / 2 \\ f_{2}\left(Z_{i}\right) & \text { with probability } 1 / 2\end{cases}
$$

(b) Show that $f_{1}(z)+f_{2}(z) \leq \sqrt{3}$. Based on this, find a $\rho<1$ so that

$$
\mathbb{E}\left[Q_{i+1} \mid Z_{0}, \ldots, Z_{i}\right] \leq \rho Q_{i}
$$

(c) Show that, for the $\rho$ you found in (b), $\mathbb{E}\left[Q_{i}\right] \leq \frac{1}{2} \rho^{i}$.
(d) Show that

$$
\mathbb{P}\left[Z_{i} \in(\delta, 1-\delta)\right]=\mathbb{P}\left[Q_{i}>\sqrt{\delta(1-\delta)}\right] \leq \frac{\rho^{i}}{2 \sqrt{\delta(1-\delta)}}
$$

Deduce that $\mathbb{P}\left[Z_{i} \in(\delta, 1-\delta)\right] \rightarrow 0$ as $i$ gets large.
Problem 5. Suppose $U$ is $\{0,1\}$ valued with $\mathbb{P}(U=0)=\mathbb{P}(U=1)=1 / 2$. Suppose we have a distortion measure $d$ given by $d(u, v)= \begin{cases}0 & \text { if } u=v, \\ 1 & \text { if }(u, v)=(1,0), \\ \infty & \text { if }(u, v)=(0,1)\end{cases}$ I.e., we never want to represent a 0 with a 1 . Find $R(D)$.

