ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 30
Principles of Digital Communications
Solutions to Homework 11
Dec. 21, 2018

Problem 1.

(a) Suppose \mathbf{x} and \mathbf{x}^{\prime} are two codewords in \mathcal{C}. Then for $\forall i=0,1, \ldots, m-1$,

$$
\begin{aligned}
x_{0}+x_{1} \alpha_{i}+\cdots+x_{n-1} \alpha_{i}^{n-1} & =0 \\
x_{0}^{\prime}+x_{1}^{\prime} \alpha_{i}+\cdots+x_{n-1}^{\prime} \alpha_{i}^{n-1} & =0
\end{aligned}
$$

Therefore,

$$
\left(x_{0}+x_{0}^{\prime}\right)+\left(x_{1}+x_{1}^{\prime}\right) \alpha_{i}+\cdots+\left(x_{n-1}+x_{n-1}^{\prime}\right) \alpha_{i}^{n-1}=0 \quad \text { for } \forall i=0,1, \ldots, m-1
$$

which shows $\mathbf{x}+\mathbf{x}^{\prime}$ is also a codeword.
(b) $x(D)=x_{0}+x_{1} D+\cdots+x_{n-1} D^{n-1}$ is a polynomial of degree (at most) $n-1$ and $\left(x_{0}, \ldots, x_{n-1}\right)$ is a codeword if $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m-1}$ are m of its roots. This means

$$
x(D)=\left(D-\alpha_{0}\right)\left(D-\alpha_{1}\right) \ldots\left(D-\alpha_{m-1}\right) h(D)=g(D) h(D)
$$

for some $h(D)$. Note that $h(D)$ can have degree (at most) $n-m-1$. On the other side, there is a one-to-one correspondence between the codewords of \mathcal{C} and degree $n-1$ polynomials. Since $g(D)$ is fixed for all codewords, a polynomial $x(D)$ corresponding to a codeword \mathbf{x} is determined by choosing the coefficients of $h(D)=$ $h_{0}+h_{1} D+\cdots+h_{n-m-1} D^{n-m-1}$. Since $h_{j} \in \mathcal{X}$ for $j=0,1, \ldots, n-m-1$ we have q^{n-m} different $h(D)$ s and, thus, q^{n-m} codewords.
(c) For every column vector $\mathbf{u}=\left[u_{0}, u_{1}, \ldots, u_{m-1}\right]^{T}, A \mathbf{u}=\left[u(1), u(\beta), \ldots, u\left(\beta^{n-1}\right)\right]^{T}$. Consequently, $A \mathbf{u}=\mathbf{0}$ means $u(D)$ has n roots which is impossible (since it is a polynomial of degree $m-1<n$).
(d) Using the same reasoning as in (c) one can verify that $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a codeword iff $\mathbf{x} A=\mathbf{0}$. This means A is the parity-check matrix of the code \mathcal{C}. Since the code is linear, using Problem 4 of Homework 11 we know that has minimum distance d iff every $d-1$ rows of H are linearly independent and some d rows are linearly dependent. That A has rank m implies there are no m linearly dependent rows thus $d \geq m+1$. On the other side, we know from the Singleton bound that a code with q^{n-m} codewords and block-length n has minimum distance $d \leq m+1$. Thus we conclude that $d=m+1$.

Problem 2.

(a) For every $0 \leq p \leq 1$, define $\bar{p}:=1-p$. We have:

$$
\begin{equation*}
h_{2}(\bar{p})=-\bar{p} \log \bar{p}-p \log p=-p \log p-\bar{p} \log \bar{p}=h_{2}(p) . \tag{1}
\end{equation*}
$$

On the other hand, it is easy to check that for every $0 \leq p^{\prime}, p^{\prime \prime} \leq 1$, we have:

$$
\overline{p^{\prime}} * p^{\prime \prime}=p^{\prime} * \overline{p^{\prime \prime}}=\overline{p^{\prime} * p^{\prime \prime}} \quad \text { and } \overline{p^{\prime}} * \overline{p^{\prime \prime}}=p^{\prime} * p^{\prime \prime}
$$

Now (1) implies that

$$
\begin{equation*}
h_{2}\left(\overline{p^{\prime}} * p^{\prime \prime}\right)=h_{2}\left(p^{\prime} * \overline{p^{\prime \prime}}\right)=h_{2}\left(\overline{p^{\prime}} * \overline{p^{\prime \prime}}\right)=h_{2}\left(p^{\prime} * p^{\prime \prime}\right) . \tag{2}
\end{equation*}
$$

Let $p^{\prime}=\mathbb{P}\left[X_{1}=1\right]$ and $p^{\prime \prime}=\mathbb{P}\left[X_{2}=1\right]$. We have the following:

- $\mathbb{P}\left[X_{1} \oplus X_{2}=1\right]=\mathbb{P}\left[X_{1}=1\right] \mathbb{P}\left[X_{2}=0\right]+\mathbb{P}\left[X_{1}=0\right] \mathbb{P}\left[X_{2}=1\right]=p^{\prime} \overline{p^{\prime \prime}}+\overline{p^{\prime}} p^{\prime \prime}=$ $p^{\prime} * p^{\prime \prime}$. Therefore, $H\left(X_{1} \oplus X_{2}\right)=h_{2}\left(p^{\prime} * p^{\prime \prime}\right)$.
- Since $H\left(X_{1}\right)=h_{2}\left(p_{1}\right)$, then we have either $p^{\prime}=p_{1}$ or $p^{\prime}=1-p_{1}$. I.e., we have $p_{1}=p^{\prime}$ or $p_{1}=1-p^{\prime}=\overline{p^{\prime}}$.
- Since $H\left(X_{2}\right)=h_{2}\left(p_{2}\right)$, then we have either $p^{\prime \prime}=p_{2}$ or $p^{\prime \prime}=1-p_{2}$. I.e., we have $p_{2}=p^{\prime \prime}$ or $p_{2}=1-p^{\prime \prime}=\overline{p^{\prime \prime}}$.

Now (2) implies that $H\left(X_{1} \oplus X_{2}\right)=h_{2}\left(p^{\prime} * p^{\prime \prime}\right)=h_{2}\left(p_{1} * p_{2}\right)$.
(b) We have $H\left(X_{1} \mid Y\right)=\sum_{y \in \mathcal{Y}} H\left(X_{1} \mid Y=y\right) \mathbb{P}_{Y}(y)=\sum_{y \in \mathcal{Y}} h_{2}\left(p_{1}(y)\right) q(y)$.

Now for every $y \in \mathcal{Y}, X_{1}$ and X_{2} are independent conditioned on $Y=y$. Moreover, $H\left(X_{1} \mid Y=y\right)=h_{2}\left(p_{1}(y)\right)$ and $H\left(X_{2} \mid Y=y\right)=H\left(X_{2}\right)=h_{2}\left(p_{2}\right)$ since X_{2} and Y are independent. Therefore, part (a) implies that $H\left(X_{1} \oplus X_{2} \mid Y=y\right)=h_{2}\left(p_{1}(y) * p_{2}\right)$.

We conclude that

$$
\begin{aligned}
H\left(X_{1} \oplus X_{2} \mid Y\right) & =\sum_{y \in \mathcal{Y}} H\left(X_{1} \oplus X_{2} \mid Y=y\right) \mathbb{P}_{Y}(y) \\
& =\sum_{y \in \mathcal{Y}} h_{2}\left(p_{1}(y) * p_{2}\right) q(y)=\sum_{y \in \mathcal{Y}} h_{2}\left(p_{2} * p_{1}(y)\right) q(y) .
\end{aligned}
$$

(c) Note that $p_{2} * p=p\left(1-p_{2}\right)+p_{2}(1-p)=\beta p+p_{2}$, where $\beta=1-2 p_{2} \geq 0$. Let $g(p)=\frac{\frac{\partial}{\partial p} h_{2}\left(p_{2} * p\right)}{\frac{\partial}{\partial p} h_{2}(p)}=\frac{\frac{\partial}{\partial p} h_{2}\left(\beta p+p_{2}\right)}{\frac{\partial}{\partial p} h_{2}(p)}=\frac{\beta h_{2}^{\prime}\left(\beta p+p_{2}\right)}{h_{2}^{\prime}(p)}$. We have

$$
\begin{aligned}
g^{\prime}(p) & =\frac{\beta^{2} h_{2}^{\prime \prime}\left(\beta p+p_{2}\right) h_{2}^{\prime}(p)-\beta h_{2}^{\prime \prime}(p) h_{2}^{\prime}\left(\beta p+p_{2}\right)}{h_{2}^{\prime}(p)^{2}} \\
& =\frac{\beta h_{2}^{\prime \prime}\left(\beta p+p_{2}\right) h_{2}^{\prime \prime}(p)}{h_{2}^{\prime}(p)^{2}}\left[\beta \frac{h_{2}^{\prime}(p)}{h_{2}^{\prime \prime}(p)}-\frac{h_{2}^{\prime}\left(\beta p+p_{2}\right)}{h_{2}^{\prime \prime}\left(\beta p+p_{2}\right)}\right] .
\end{aligned}
$$

Note that $h_{2}^{\prime}(p)=\log \frac{1-p}{p}$ and $h_{2}^{\prime \prime}(p)=\frac{-1}{p(1-p) \ln 2}$, which implies that $h_{2}^{\prime \prime}\left(\beta p+p_{2}\right) \leq 0$ and $h_{2}^{\prime \prime}(p) \leq 0$. Therefore, $\frac{\beta h_{2}^{\prime \prime}\left(\beta p+p_{2}\right) h_{2}^{\prime \prime}(p)}{h_{2}^{\prime}(p)^{2}} \geq 0$ and so it is sufficient to show that we have $\beta \frac{h_{2}^{\prime}(p)}{h_{2}^{\prime}(p)}-\frac{h_{2}^{\prime}\left(\beta p+p_{2}\right)}{h_{2}^{\prime}\left(\beta p+p_{2}\right)} \geq 0$. Now define $\alpha=1-2 p$. It is easy to check the following:

- $p=\frac{1}{2}(1-\alpha)$.
- $1-p=\frac{1}{2}(1+\alpha)$.
- $\beta p+p_{2}=\frac{1}{2}(1-\alpha \beta)$.
- $1-\left(\beta p+p_{2}\right)=\frac{1}{2}(1+\alpha \beta)$.

Therefore, we have

$$
\beta \frac{h_{2}^{\prime}(p)}{h_{2}^{\prime \prime}(p)}=-\beta(\ln 2) p(1-p) \log \frac{1-p}{p}=-\frac{\beta \ln 2}{4}\left(1-\alpha^{2}\right) \log \frac{1+\alpha}{1-\alpha},
$$

and

$$
\frac{h_{2}^{\prime}\left(\beta p+p_{2}\right)}{h_{2}^{\prime \prime}\left(\beta p+p_{2}\right)}=-(\ln 2)\left(\beta p+p_{2}\right)\left(1-\beta p-p_{2}\right) \log \frac{1-\beta p-p_{2}}{\beta p+p_{2}}=-\frac{\ln 2}{4}\left(1-(\alpha \beta)^{2}\right) \log \frac{1+\alpha \beta}{1-\alpha \beta}
$$

Using the formula $\log (1+x)=\sum_{k \geq 1}(-1)^{k-1} \frac{x^{k}}{k}$, we get

$$
\begin{aligned}
\log \frac{1+x}{1-x}=\log (1+x)-\log (1-x) & =\left(\sum_{k \geq 1}(-1)^{k-1} \frac{x^{k}}{k}\right)-\left(\sum_{k \geq 1}(-1)^{k-1} \frac{(-x)^{k}}{k}\right) \\
& =\sum_{k \geq 1}\left((-1)^{k-1}+1\right) \frac{x^{k}}{k}=2 \sum_{\substack{k \geq 1 \\
k \text { is odd }}} \frac{x^{k}}{k} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
-\left(1-x^{2}\right) \log \frac{1+x}{1-x} & =-2 \sum_{\substack{k \geq 1 \\
k \text { is odd }}} \frac{x^{k}}{k}+2 \sum_{\substack{k \geq 1 \\
k \text { is odd }}} \frac{x^{k+2}}{k}=-2 x-2 \sum_{\substack{k \geq 3 \\
k \text { is odd }}} \frac{x^{k}}{k}+2 \sum_{\substack{k \geq 3 \\
k \text { is odd }}} \frac{x^{k}}{k-2} \\
& =-2 x+2 \sum_{\substack{k \geq 3 \\
k \text { is odd }}}\left(\frac{1}{k-2}-\frac{1}{k}\right) x^{k} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\beta \frac{h_{2}^{\prime}(p)}{h_{2}^{\prime \prime}(p)} & =-\frac{\beta \ln 2}{4}\left(1-\alpha^{2}\right) \log \frac{1+\alpha}{1-\alpha}=\frac{\beta \ln 2}{4}\left[-2 \alpha+2 \sum_{\substack{k \geq 3 \\
k \text { is odd }}}\left(\frac{1}{k-2}-\frac{1}{k}\right) \alpha^{k}\right] \\
& =-\frac{\alpha \beta \ln 2}{2}+\frac{\ln 2}{2} \sum_{\substack{k \geq 3 \\
k \text { is odd }}}\left(\frac{1}{k-2}-\frac{1}{k}\right) \beta \alpha^{k},
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{h_{2}^{\prime}\left(\beta p+p_{2}\right)}{h_{2}^{\prime \prime}\left(\beta p+p_{2}\right)} & =-\frac{\ln 2}{4}\left(1-(\alpha \beta)^{2}\right) \log \frac{1+\alpha \beta}{1-\alpha \beta}=\frac{\ln 2}{4}\left[-2 \alpha \beta+2 \sum_{\substack{k \geq 3 \\
k \text { is odd }}}\left(\frac{1}{k-2}-\frac{1}{k}\right)(\alpha \beta)^{k}\right] \\
& =-\frac{\alpha \beta \ln 2}{2}+\frac{\ln 2}{2} \sum_{\substack{k \geq 3 \\
k \text { is odd }}}\left(\frac{1}{k-2}-\frac{1}{k}\right) \beta^{k} \alpha^{k} .
\end{aligned}
$$

We conclude that

$$
\beta \frac{h_{2}^{\prime}(p)}{h_{2}^{\prime \prime}(p)}-\frac{h_{2}^{\prime}\left(\beta p+p_{2}\right)}{h_{2}^{\prime \prime}\left(\beta p+p_{2}\right)}=\frac{\ln 2}{2} \sum_{\substack{k \geq 3 \\ k \text { is odd }}}\left(\frac{1}{k-2}-\frac{1}{k}\right)\left(\beta-\beta^{k}\right) \alpha^{k} \stackrel{(*)}{\geq} 0
$$

where $(*)$ follows from the fact that $\beta=1-2 p_{2} \leq 1$ which implies that $\beta^{k} \leq \beta$. Therefore, $g^{\prime}(p) \geq 0$ and so $g(p)$ is increasing. We conclude that the function f is convex.
(d) We have

$$
\begin{aligned}
H\left(X_{1} \oplus X_{2} \mid Y\right) & =\sum_{y \in \mathcal{Y}} h_{2}\left(p_{2} * p_{1}(y)\right) q(y)=\sum_{y \in \mathcal{Y}} h_{2}\left(p_{2} * h_{2}^{-1}\left(H\left(X_{1} \mid Y=y\right)\right)\right) q(y) \\
& =\sum_{y \in \mathcal{Y}} f\left(H\left(X_{1} \mid Y=y\right)\right) q(y) \stackrel{\stackrel{*}{2}}{\geq} f\left(\sum_{y \in \mathcal{Y}} H\left(X_{1} \mid Y=y\right) q(y)\right) \\
& =f\left(H\left(X_{1} \mid Y\right)\right)=h_{2}\left(p_{2} * h_{2}^{-1}\left(H\left(X_{1} \mid Y\right)\right)\right)=h_{2}\left(p_{2} * p_{1}\right)=h_{2}\left(p_{1} * p_{2}\right),
\end{aligned}
$$

where $(*)$ follows from the convexity of the function f.
(e) For every $y_{1} \in \mathcal{Y}_{1}$, let $0 \leq p_{1}\left(y_{1}\right) \leq \frac{1}{2}$ be such that $H\left(X_{1} \mid Y_{1}=y_{1}\right)=h_{2}\left(p_{1}\left(y_{1}\right)\right)$ and let $q_{1}\left(y_{1}\right)=\mathbb{P}_{Y_{1}}\left(y_{1}\right)$. Similarly, for every $y_{2} \in \mathcal{Y}_{2}$, let $0 \leq p_{2}\left(y_{2}\right) \leq \frac{1}{2}$ be such that $H\left(X_{2} \mid Y_{2}=y_{2}\right)=h_{2}\left(p_{2}\left(y_{2}\right)\right)$ and let $q_{2}\left(y_{2}\right)=\mathbb{P}_{Y_{2}}\left(y_{2}\right)$. For every $y_{1} \in \mathcal{Y}_{1}$, define the mapping $f_{y_{1}}:[0,1] \rightarrow \mathbb{R}$ as $f_{y_{1}}(h)=h_{2}\left(p_{1}(y) * h_{2}^{-1}(h)\right)$. Part (c) implies that $f_{y_{1}}$ is convex for every $y_{1} \in \mathcal{Y}_{1}$. We have

$$
\begin{aligned}
H\left(X_{1} \oplus X_{2} \mid Y_{1}, Y_{2}\right) & =\sum_{y_{1} \in \mathcal{Y}_{1}} \sum_{y_{2} \in \mathcal{Y}_{2}} h_{2}\left(p_{1}\left(y_{1}\right) * p_{2}\left(y_{2}\right)\right) \mathbb{P}_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) \\
& =\sum_{y_{1} \in \mathcal{Y}_{1}} \sum_{y_{2} \in \mathcal{Y}_{2}} h_{2}\left(p_{1}\left(y_{1}\right) * p_{2}\left(y_{2}\right)\right) q_{1}\left(y_{1}\right) q_{2}\left(y_{2}\right) \\
& =\sum_{y_{1} \in \mathcal{Y}_{1}} q_{1}\left(y_{1}\right) \sum_{y_{2} \in \mathcal{Y}_{2}} h_{2}\left(p_{1}\left(y_{1}\right) * h_{2}^{-1}\left(H\left(X_{2} \mid Y_{2}=y_{2}\right)\right)\right) q_{2}\left(y_{2}\right) \\
& =\sum_{y_{1} \in \mathcal{Y}_{1}} q_{1}\left(y_{1}\right) \sum_{y_{2} \in \mathcal{Y}_{2}} f_{y_{1}}\left(H\left(X_{2} \mid Y_{2}=y_{2}\right)\right) q_{2}\left(y_{2}\right) \\
& \stackrel{(*)}{\geq} \sum_{y_{1} \in \mathcal{Y}_{1}} q_{1}\left(y_{1}\right) f_{y_{1}}\left(\sum_{y_{2} \in \mathcal{Y}_{2}} H\left(X_{2} \mid Y_{2}=y_{2}\right) q_{2}\left(y_{2}\right)\right) \\
& =\sum_{y_{1} \in \mathcal{Y}_{1}} q_{1}\left(y_{1}\right) f_{y_{1}}\left(H\left(X_{2} \mid Y_{2}\right)\right)=\sum_{y_{1} \in \mathcal{Y}_{1}} q_{1}\left(y_{1}\right) h_{2}\left(p_{1}\left(y_{1}\right) * h_{2}^{-1}\left(H\left(X_{2} \mid Y_{2}\right)\right)\right) \\
& =\sum_{y_{1} \in \mathcal{Y}_{1}} q_{1}\left(y_{1}\right) h_{2}\left(p_{1}\left(y_{1}\right) * p_{2}\right)=\sum_{y_{1} \in \mathcal{Y}_{1}} h_{2}\left(p_{2} * h_{2}^{-1}\left(H\left(X_{1} \mid Y_{1}=y_{1}\right)\right)\right) q_{1}\left(y_{1}\right) \\
& =\sum_{y_{1} \in \mathcal{Y}_{1}} f\left(H\left(X_{1} \mid Y_{1}=y_{1}\right)\right) q_{1}\left(y_{1}\right) \stackrel{(* *)}{\geq} f\left(\sum_{y_{1} \in \mathcal{Y}_{1}} H\left(X_{1} \mid Y_{1}=y_{1}\right) q\left(y_{1}\right)\right) \\
& =f\left(H\left(X_{1} \mid Y_{1}\right)\right)=h_{2}\left(p_{2} * h_{2}^{-1}\left(H\left(X_{1} \mid Y_{1}\right)\right)\right)=h_{2}\left(p_{2} * p_{1}\right)=h_{2}\left(p_{1} * p_{2}\right),
\end{aligned}
$$

where $(*)$ follows from the convexity of the functions $\left\{f_{y_{1}}: y_{1} \in \mathcal{Y}_{1}\right\}$ and $(* *)$ follows from the convexity of f.

Problem 3.

(a) Any codeword of \mathcal{C} is of the from $\langle\mathbf{a}, \mathbf{a} \oplus \mathbf{b}\rangle$ with $\mathbf{a} \in \mathcal{C}_{1}$ and $\mathbf{b} \in \mathcal{C}_{2}$. Given two codewords $\left\langle\mathbf{u}^{\prime}, \mathbf{u}^{\prime} \oplus \mathbf{v}^{\prime}\right\rangle$ and $\left\langle\mathbf{u}^{\prime \prime}, \mathbf{u}^{\prime \prime} \oplus \mathbf{v}^{\prime \prime}\right\rangle$ of \mathcal{C}, their sum is $\langle\mathbf{u}, \mathbf{u} \oplus \mathbf{v}\rangle$ with $\mathbf{u}=\mathbf{u}^{\prime} \oplus \mathbf{u}^{\prime \prime}$ and $\mathbf{v}=\mathbf{v}^{\prime} \oplus \mathbf{v}^{\prime \prime}$. Since \mathcal{C}_{1} and \mathcal{C}_{2} are linear codes $\mathbf{u} \in \mathcal{C}_{1}$ and $\mathbf{v} \in \mathcal{C}_{2}$. Thus the sum of any two codewords of \mathcal{C} is a codeword of \mathcal{C} and we conclude that \mathcal{C} is linear.
(b) If $(\mathbf{u}, \mathbf{v}) \neq\left(\mathbf{u}^{\prime}, \mathbf{v}^{\prime}\right)$, then either $\mathbf{u} \neq \mathbf{u}^{\prime}$, or, $\mathbf{u}=\mathbf{u}^{\prime}$ and $\mathbf{v} \neq \mathbf{v}^{\prime}$. In either case $\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle \neq\left\langle\mathbf{u}^{\prime} \mid \mathbf{u}^{\prime} \oplus \mathbf{v}^{\prime}\right\rangle$: in the first case the first halves differ, in the second case the second halves differ. Thus no two of the (\mathbf{u}, \mathbf{v}) pairs are mapped to the same element of \mathcal{C}, and the code has exactly $M_{1} M_{2}$ elements. Its rate is $\frac{1}{2 n} \log \left(M_{1} M_{2}\right)=\frac{1}{2} R_{1}+\frac{1}{2} R_{2}$.
(c) As $\mathbf{v}=\mathbf{u} \oplus \mathbf{u} \oplus \mathbf{v}$,

$$
w_{H}(\mathbf{v})=w_{H}(\mathbf{u} \oplus \mathbf{u} \oplus \mathbf{v}) \leq w_{H}(\mathbf{u})+w_{H}(\mathbf{u} \oplus \mathbf{v})
$$

by the triangle inequality. Noting that the right hand side is $w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle)$ completes the proof.
(d) If $\mathbf{v}=\mathbf{0}$ we have $\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle=\langle\mathbf{u} \mid \mathbf{u}\rangle$ which has twice the Hamming weight of \mathbf{u}. Otherwise (c) gives $w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle) \geq w_{H}(\mathbf{v})$.
(e) Since \mathcal{C} is linear its minimum distance equals the minimum weight of its non-zero codewords. If $\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle$ is non-zero either $\mathbf{v} \neq \mathbf{0}$, or, $\mathbf{v}=\mathbf{0}$ and $\mathbf{u} \neq \mathbf{0}$. By (d), in the first case $w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle) \geq w_{H}(\mathbf{v}) \geq d_{1}$, in the second case $w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle) \geq$ $2 w_{H}(\mathbf{u}) \geq 2 d_{2}$. Thus $d \geq \min \left\{2 d_{1}, d_{2}\right\}$.
(f) Let \mathbf{u}_{0} be the minimum weight non-zero codeword of \mathcal{C}_{1} and let \mathbf{v}_{0} be the minimum weight non-zero codeword of \mathcal{C}_{2}. Note that $\left\langle\mathbf{u}_{0} \mid \mathbf{u}_{0}\right\rangle$ is a non-zero codeword of \mathcal{C} (corresponding to the choice $\mathbf{u}=\mathbf{u}_{0}, \mathbf{v}=\mathbf{0}$). It has weight $2 d_{1}$. Similarly, $\left\langle\mathbf{0} \mid \mathbf{v}_{0}\right\rangle$ is also a non-zero codeword of \mathcal{C} (corresponding to the choice $\mathbf{u}=\mathbf{0}, \mathbf{v}=\mathbf{v}_{0}$). It has weight d_{2}. Consequently $d \leq \min \left\{2 d_{1}, d_{2}\right\}$. In light of (e) we find $d=\min \left\{2 d_{1}, d_{2}\right\}$.

This method of constructing a longer code from two shorter ones is known under several names: 'Plotkin construction', 'bar product', ' $(u \mid u+v)$ construction' appear regularly in the literature. Compare this method to the 'obvious' method of letting the codewords to be $\langle\mathbf{u} \mid \mathbf{v}\rangle$. The simple method has the same block-length and rate as we have here, but its minimum distance is only $\min \left\{d_{1}, d_{2}\right\}$. The factor two gained in d_{1} by the bar product is significant, and many practical code families can be built from very simple base codes by a recursive application of the bar product. Notable among them are the family of Reed-Muller codes.

Problem 4.

(a) We have

$$
\begin{aligned}
Q_{i+1} & =\sqrt{Z_{i+1}\left(1-Z_{i+1}\right)}= \begin{cases}\sqrt{Z_{i}^{2}\left(1-Z_{i}^{2}\right)} & \text { w.p. } 1 / 2 \\
\sqrt{\left(2 Z_{i}-Z_{i}^{2}\right)\left(1-2 Z_{i}+Z_{i}^{2}\right)} & \text { w.p. } 1 / 2\end{cases} \\
& = \begin{cases}\sqrt{Z_{i}^{2}\left(1-Z_{i}\right)\left(1+Z_{i}\right)} & \text { w.p. } 1 / 2 \\
\sqrt{\left(2-Z_{i}\right) Z_{i}\left(1-Z_{i}\right)^{2}} & \text { w.p. } 1 / 2\end{cases} \\
& = \begin{cases}\sqrt{Z_{i}\left(1-Z_{i}\right)} \sqrt{Z_{i}\left(1+Z_{i}\right)} & \text { w.p. } 1 / 2 \\
\sqrt{Z_{i}\left(1-Z_{i}\right)} \sqrt{\left(2-Z_{i}\right)\left(1-Z_{i}\right)} & \text { w.p. } 1 / 2\end{cases} \\
& =\sqrt{Z_{i}\left(1-Z_{i}\right)} \begin{cases}\sqrt{Z_{i}\left(1+Z_{i}\right)} & \text { w.p. } 1 / 2 \\
\sqrt{\left(2-Z_{i}\right)\left(1-Z_{i}\right)} & \text { w.p. } 1 / 2\end{cases} \\
& =Q_{i} \begin{cases}f_{1}\left(Z_{i}\right) & \text { w.p. } 1 / 2 \\
f_{2}\left(Z_{i}\right) & \text { w.p. } 1 / 2\end{cases}
\end{aligned}
$$

where $f_{1}(z)=\sqrt{z(z+1)}$ and $f_{2}(z)=\sqrt{(2-z)(1-z)}$.
(b) We have

$$
f_{1}^{\prime}(z)=\frac{2 z+1}{2 \sqrt{z(z+1)}}
$$

so

$$
\begin{aligned}
f_{1}^{\prime \prime}(z) & =\frac{4 \sqrt{z(z+1)}-(2 z+1) \frac{2(2 z+1)}{2 \sqrt{z(z+1)}}}{(2 \sqrt{z(z+1)})^{2}} \\
& =\frac{4 z(z+1)-(2 z+1)^{2}}{4(z(z+1))^{\frac{3}{2}}}=\frac{-1}{4(z(z+1))^{\frac{3}{2}}} \leq 0 .
\end{aligned}
$$

Therefore, f_{1} is concave. By noticing that $f_{2}(z)=f_{1}(1-z)$, we obtain:

$$
\begin{aligned}
f_{1}(z)+f_{2}(z) & =f_{1}(z)+f_{1}(1-z)=2\left(\frac{1}{2} f_{1}(z)+\frac{1}{2} f_{1}(1-z)\right) \\
& \stackrel{(*)}{\leq} 2 f_{1}\left(\frac{1}{2} z+\frac{1}{2}(1-z)\right)=2 f_{1}\left(\frac{1}{2}\right)=2 \sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)} \\
& =2 \sqrt{\frac{1}{2} \cdot \frac{3}{2}}=2 \frac{\sqrt{3}}{2}=\sqrt{3},
\end{aligned}
$$

where $(*)$ follows from the concavity of f_{1}. We have

$$
\mathbb{E}\left[Q_{i+1} \mid Z_{0}, \ldots, Z_{i}\right]=\frac{1}{2} f_{1}\left(Z_{i}\right) Q_{i}+\frac{1}{2} f_{2}\left(Z_{i}\right) Q_{i}=\frac{1}{2}\left(f_{1}\left(Z_{i}\right)+f_{2}\left(Z_{i}\right)\right) Q_{i} \leq \rho Q_{i},
$$

where $\rho=\frac{\sqrt{3}}{2}<1$.
(c) We will show the claim by induction on $i \geq 0$. For $i=0$, we have $Z_{0}=z_{0}$ with probability 1 . Therefore, $\mathbb{E} Q_{0}=\sqrt{z_{0}\left(1-z_{0}\right)}$.
It is easy to that the function $[0,1] \rightarrow \mathbb{R}$ defined by $z \rightarrow \sqrt{z(1-z)}$ achieves its maximum at $z=\frac{1}{2}$, and so $\mathbb{E} Q_{0}=\sqrt{z_{0}\left(1-z_{0}\right)} \leq \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right)}=\frac{1}{2}$. Therefore, the claim is true for $i=0$.
Now suppose that the claim is true for $i \geq 0$, i.e., $\mathbb{E} Q_{i} \leq \frac{1}{2} \rho^{i}$. We have

$$
\mathbb{E} Q_{i+1}=\mathbb{E}\left[\mathbb{E}\left[Q_{i+1} \mid Z_{0}, \ldots, Z_{i}\right]\right] \stackrel{(*)}{\leq} \mathbb{E}\left[\rho Q_{i}\right]=\rho \mathbb{E}\left[Q_{i}\right] \stackrel{(* *)}{\leq} \rho \cdot \frac{1}{2} \rho^{i}=\frac{1}{2} \rho^{i+1},
$$

where ($*$) follows from Part (b) and ($* *$) follows from the induction hypothesis. We conclude that $\mathbb{E} Q_{i} \leq \frac{1}{2} \rho^{i}$ for every $i \geq 0$.
(d) By noticing that $\delta<z<1-\delta$ if and only if $z(1-z)>\delta(1-\delta)$, we get:

$$
\begin{aligned}
\mathbb{P}\left[Z_{i} \in(\delta, 1-\delta)\right] & =\mathbb{P}\left[Z_{i}\left(1-Z_{i}\right)>\delta(1-\delta)\right]=\mathbb{P}\left[\sqrt{Z_{i}\left(1-Z_{i}\right)}>\sqrt{\delta(1-\delta)}\right] \\
& =\mathbb{P}\left[Q_{i}>\sqrt{\delta(1-\delta)}\right] \stackrel{(*)}{\leq} \frac{\mathbb{E} Q_{i}}{\sqrt{\delta(1-\delta)}} \stackrel{(* *)}{\leq} \frac{\rho^{i}}{2 \sqrt{\delta(1-\delta)}},
\end{aligned}
$$

where ($*$) follows from the Markov inequality and ($* *$) follows from Part (c). Now since $\rho<1$, we have $\frac{\rho^{i}}{2 \sqrt{\delta(1-\delta)}} \rightarrow 0$ as $i \rightarrow \infty$. We conclude that

$$
\mathbb{P}\left[Z_{i} \in(\delta, 1-\delta)\right] \rightarrow 0 \text { as } i \text { gets large. }
$$

Problem 5. As we should never represent a 0 with a 1 , we are restricted to conditional distributions with $p_{V \mid U}(1 \mid 0)=0$. Consequently, the possible $p_{V \mid U}$ are of the type

$$
p_{V \mid U}(0 \mid 0)=1 \quad p_{V \mid U}(1 \mid 0)=0, \quad p_{V \mid U}(0 \mid 1)=\alpha \quad p_{V \mid U}(1 \mid 1)=1-\alpha
$$

and parametrized by $\alpha \in[0,1]$. For $p_{V \mid U}$ as above, we have $\operatorname{Pr}(V=1)=\frac{1}{2}(1-\alpha)$, and

$$
\begin{aligned}
E[d(U, V)] & =\sum_{u, v} p_{U}(u) p_{V \mid U}(v \mid u) d(u, v)=\alpha / 2, \\
I(U ; V) & =H(V)-H(V \mid U)=h_{2}\left(\frac{1}{2}(1-\alpha)\right)-\frac{1}{2} h_{2}(\alpha)=: f(\alpha) .
\end{aligned}
$$

Thus $R(D)=\min \{f(\alpha): 0 \leq \alpha \leq \min \{1,2 D\}\}$, with $f(\alpha)=h_{2}\left(\frac{1}{2}(1-\alpha)\right)-\frac{1}{2} h_{2}(\alpha)$. It is not difficult to check that f is a decreasing function on the interval $[0,1]$, and thus consequently

$$
R(D)= \begin{cases}h_{2}\left(\frac{1}{2}-D\right)-\frac{1}{2} h_{2}(2 D), & 0 \leq D<\frac{1}{2} \\ 0, & D \geq \frac{1}{2}\end{cases}
$$

Note that for $D \geq \frac{1}{2}$ we can represent any u with a constant, namely $v=0$, with average distortion $1 / 2$.

