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Problem 1. Suppose U = V are additive groups with group operation ⊕. (E.g., U =
V = {0, . . . , K − 1}, with modulo K addition.) Suppose the distortion measure d(u, v)
depends only on the difference between u and v and is given by g(u	 v). Let φ(D) denote
maxH(Z) : E[g(Z)] ≤ D.

a) Show that φ(D) is concave.
b) Let (U, V ) be such that E[d(U, V )] ≤ D. Show that I(U ;V ) ≥ H(U) − φ(D) by

justifying

I(U ;V ) = H(U)−H(U |V ) = H(U)−H(U 	 V |V ) ≥ H(U)−H(U 	 V ) ≥ H(U)− φ(D).

c) Show that R(D) ≥ H(U)− φ(D).
d) Assume now that U is uniform on U . Show that R(D) = H(U)− φ(D).

Problem 2. Suppose U = V = R, the set of real numbers, and d(u, v) = (u − v)2. Show
that for any U with variance σ2, R(D) satisfies

h(U)− 1
2

log(2πeD) ≤ R(D) ≤
[
1
2

log(σ2/D)
]+
.

Problem 3. Consider a two-way communication system where two parties communicate
via a common output they both can observe and influence. Denote the common output
by Y , and the signals emitted by the two parties by x1 and x2 respectively. Let p(y|x1, x2)
model the memoryless channel through which the two parties influence the output.

We will consider feedback-free block codes, i.e., we will use encoding and decoding
functions of the form

enc1 : {1, . . . , 2nR1} → X n
1 dec1 : Yn × {1, . . . , 2nR1} → {1, . . . , 2nR2}

enc2 : {1, . . . , 2nR2} → X n
2 dec2 : Yn × {1, . . . , 2nR2} → {1, . . . , 2nR1}

with which the parties encode their own message and decode the other party’s messages.
(Note that when a party is decoding the other party’s message, it can make use of the
knowledge of its own message).

We will say that the rate pair (R1, R2) is achievable, if for any ε > 0, there exist encoders
and decoders with the above form for which the average error probability is less than ε.

Consider the following ‘random coding’ method to construct the encoders:

(i) Choose probability distributions pj on Xj, j = 1, 2.

(ii) Choose {enc1(m1)i : m1 = 1, . . . , 2nR1 , i = 1, . . . , n} i.i.d., each having distribution as
p1. Similarly, choose {enc2(m2)i : m2 = 1, . . . , 2nR2 , i = 1, . . . , n} i.i.d., each having
distribution as p2, independently of the choices for enc1.

For the decoders we will use typicality decoders:

(i) Set p(x1, x2, y) = p1(x1)p2(x2)p(y|x1, x2). Choose a small ε > 0 and consider the set
T of ε-typical (xn1 , x

n
2 , y

n)’s with respect to p.



(ii) For decoder 1: given yn and the correct m1, dec1 will declare m̂2 if it is the unique
m2 for which (enc1(m1), enc2(m2), y

n) ∈ T . If there is no such m2, dec1 outputs 0.
(Similar description applies to Decoder 2.)

(a) Given that m1 and m2 are the transmitted messages, show that
(enc1(m1), enc2(m2), Y

n) ∈ T with high probability.

(b) Given that m1 and m2 are the transmitted messages, and m̃1 6= m1 what is the
probability distribution of (enc1(m̃1), enc(m2), Y

n)?

(c) Under the assumptions in (b) show that the

Pr{(enc1(m̃1), enc2(m2), Y
n) ∈ T} .= 2−nI(X1;X2Y ).

(d) Show that all rate pairs satisfying

R1 ≤ I(X1;Y X2), R2 ≤ I(X2;Y X1)

for some p(x1, x2) = p(x1)p(x2) are achievable.

(e) For the case when X1, X2, Y are all binary and Y is the product of X1 and X2, show
that the achievable region is strictly larger than what we can obtain by ‘half duplex
communication’ (i.e., the set of rates that satisfy R1 +R2 ≤ 1.)

Problem 4. Let

Z1 =

{
1, p

0, q
, Z2 =

{
1, p

0, q

and let U = Z1Z2, V = Z1 + Z2. Assume Z1 and Z2 are independent. Note that we
have a joint distribution induced on U ×V . Suppose that (Ui, Vi) are i.i.d according to the
distribution induced as above. Sender 1 compresses Un at rate R1 and sender 2 compresses
V n at rate R2.

(a) Find the Slepian-Wolf rate region for recovering (Un, V n) at receiver.

(b) What is the residual uncertainty that receiver has about (Zn
1 , Z

n
2 )? i.e. H(Zn

1Z
n
2 |UnV n).

Problem 5. Suppose we are told that for any n and M , for any binary code with block-
length n, with M codewords, the minimum distance dmin satisfies dmin ≤ d0(M,n) where
d0 is a specified upper bound on minimum distance.

(a) Show that any upper bound d0 can be improved to he following upper bound: for
any n, M , for any binary code with blocklength n with M codewords

dmin ≤ d1(M,n)

where d1(M,n) = min
k: 0≤k≤n

d0(dM/2ke, n− k).

(b) Consider the trivial bound

d0(M,n) =

{
n, M ≥ 2

∞, M ≤ 1

What is the bound d1 constructed via (a) for this d0?
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(c) Suppose we are given a binary code with M words of blocklength n. Fix 1 ≤ i ≤ n
and let a1, . . . , aM be the ith bits if the M codewords. Suppose M1 of the am’s are
’1’ and M0 of them are ’0’. Show that

M∑
m=1

M∑
m′=1
m′ 6=m

dH(am, a
′
m) = 2M0M1 ≤M2/2.

(d) Show that for any binary code with M ≥ 2 codewords x1, . . . , xM of blocklength n

M(M − 1)dmin ≤
M∑

m=1

M∑
m′=1
m′ 6=m

dH(xm, xm′) ≤ nM2/2;

consequently, dmin ≤ b12n
M

M−1c.
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