ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 31	Principles of Digital Communications
Homework 12	Dec. 21, 2020

PROBLEM 1. Suppose $\mathcal{U} = \mathcal{V}$ are additive groups with group operation \oplus . (E.g., $\mathcal{U} = \mathcal{V} = \{0, \ldots, K-1\}$, with modulo K addition.) Suppose the distortion measure d(u, v) depends only on the difference between u and v and is given by $g(u \oplus v)$. Let $\phi(D)$ denote $\max H(Z) : E[g(Z)] \leq D$.

a) Show that $\phi(D)$ is concave.

b) Let (U, V) be such that $E[d(U, V)] \leq D$. Show that $I(U; V) \geq H(U) - \phi(D)$ by justifying

$$I(U;V) = H(U) - H(U|V) = H(U) - H(U \ominus V|V) \ge H(U) - H(U \ominus V) \ge H(U) - \phi(D).$$

c) Show that $R(D) \ge H(U) - \phi(D)$.

d) Assume now that U is uniform on \mathcal{U} . Show that $R(D) = H(U) - \phi(D)$.

PROBLEM 2. Suppose $\mathcal{U} = \mathcal{V} = \mathbb{R}$, the set of real numbers, and $d(u, v) = (u - v)^2$. Show that for any U with variance σ^2 , R(D) satisfies

$$h(U) - \frac{1}{2}\log(2\pi eD) \le R(D) \le \left[\frac{1}{2}\log(\sigma^2/D)\right]^+.$$

PROBLEM 3. Consider a two-way communication system where two parties communicate via a *common* output they both can observe and influence. Denote the common output by Y, and the signals emitted by the two parties by x_1 and x_2 respectively. Let $p(y|x_1, x_2)$ model the memoryless channel through which the two parties influence the output.

We will consider feedback-free block codes, i.e., we will use encoding and decoding functions of the form

enc₁:
$$\{1, \dots, 2^{nR_1}\} \to \mathcal{X}_1^n$$
 dec₁: $\mathcal{Y}^n \times \{1, \dots, 2^{nR_1}\} \to \{1, \dots, 2^{nR_2}\}$
enc₂: $\{1, \dots, 2^{nR_2}\} \to \mathcal{X}_2^n$ dec₂: $\mathcal{Y}^n \times \{1, \dots, 2^{nR_2}\} \to \{1, \dots, 2^{nR_1}\}$

with which the parties encode their own message and decode the other party's messages. (Note that when a party is decoding the other party's message, it can make use of the knowledge of its own message).

We will say that the rate pair (R_1, R_2) is achievable, if for any $\epsilon > 0$, there exist encoders and decoders with the above form for which the average error probability is less than ϵ .

Consider the following 'random coding' method to construct the encoders:

- (i) Choose probability distributions p_j on \mathcal{X}_j , j = 1, 2.
- (ii) Choose $\{ enc_1(m_1)_i : m_1 = 1, \ldots, 2^{nR_1}, i = 1, \ldots, n \}$ i.i.d., each having distribution as p_1 . Similarly, choose $\{ enc_2(m_2)_i : m_2 = 1, \ldots, 2^{nR_2}, i = 1, \ldots, n \}$ i.i.d., each having distribution as p_2 , independently of the choices for enc_1 .

For the decoders we will use typicality decoders:

(i) Set $p(x_1, x_2, y) = p_1(x_1)p_2(x_2)p(y|x_1, x_2)$. Choose a small $\epsilon > 0$ and consider the set T of ϵ -typical (x_1^n, x_2^n, y^n) 's with respect to p.

- (ii) For decoder 1: given y^n and the correct m_1 , dec₁ will declare \hat{m}_2 if it is the unique m_2 for which $(\text{enc}_1(m_1), \text{enc}_2(m_2), y^n) \in T$. If there is no such m_2 , dec₁ outputs 0. (Similar description applies to Decoder 2.)
- (a) Given that m_1 and m_2 are the transmitted messages, show that $(\text{enc}_1(m_1), \text{enc}_2(m_2), Y^n) \in T$ with high probability.
- (b) Given that m_1 and m_2 are the transmitted messages, and $\tilde{m}_1 \neq m_1$ what is the probability distribution of $(\text{enc}_1(\tilde{m}_1), \text{enc}(m_2), Y^n)$?
- (c) Under the assumptions in (b) show that the

$$\Pr\{(\mathrm{enc}_1(\tilde{m}_1), \mathrm{enc}_2(m_2), Y^n) \in T\} \doteq 2^{-nI(X_1; X_2Y)}.$$

(d) Show that all rate pairs satisfying

$$R_1 \le I(X_1; YX_2), \quad R_2 \le I(X_2; YX_1)$$

for some $p(x_1, x_2) = p(x_1)p(x_2)$ are achievable.

(e) For the case when X_1 , X_2 , Y are all binary and Y is the product of X_1 and X_2 , show that the achievable region is strictly larger than what we can obtain by 'half duplex communication' (i.e., the set of rates that satisfy $R_1 + R_2 \leq 1$.)

PROBLEM 4. Let

$$Z_1 = \begin{cases} 1, & p \\ 0, & q \end{cases}, \qquad Z_2 = \begin{cases} 1, & p \\ 0, & q \end{cases}$$

and let $U = Z_1Z_2$, $V = Z_1 + Z_2$. Assume Z_1 and Z_2 are independent. Note that we have a joint distribution induced on $\mathcal{U} \times \mathcal{V}$. Suppose that (U_i, V_i) are i.i.d according to the distribution induced as above. Sender 1 compresses U^n at rate R_1 and sender 2 compresses V^n at rate R_2 .

- (a) Find the Slepian-Wolf rate region for recovering (U^n, V^n) at receiver.
- (b) What is the residual uncertainty that receiver has about (Z_1^n, Z_2^n) ? i.e. $H(Z_1^n Z_2^n | U^n V^n)$.

PROBLEM 5. Suppose we are told that for any n and M, for any binary code with blocklength n, with M codewords, the minimum distance d_{min} satisfies $d_{min} \leq d_0(M, n)$ where d_0 is a specified upper bound on minimum distance.

(a) Show that any upper bound d_0 can be improved to he following upper bound: for any n, M, for any binary code with blocklength n with M codewords

$$d_{\min} \le d_1(M, n)$$

where $d_1(M, n) = \underset{k: \ 0 \le k \le n}{\min} d_0(\lceil M/2^k \rceil, n-k).$

(b) Consider the trivial bound

$$d_0(M,n) = \begin{cases} n, & M \ge 2\\ \infty, & M \le 1 \end{cases}$$

What is the bound d_1 constructed via (a) for this d_0 ?

(c) Suppose we are given a binary code with M words of blocklength n. Fix $1 \le i \le n$ and let a_1, \ldots, a_M be the *i*th bits if the M codewords. Suppose M_1 of the a_m 's are '1' and M_0 of them are '0'. Show that

$$\sum_{m=1}^{M} \sum_{\substack{m'=1\\m'\neq m}}^{M} d_H(a_m, a'_m) = 2M_0 M_1 \le M^2/2.$$

(d) Show that for any binary code with $M \ge 2$ codewords x_1, \ldots, x_M of blocklength n

$$M(M-1)d_{min} \le \sum_{m=1}^{M} \sum_{\substack{m'=1\\m' \ne m}}^{M} d_H(x_m, x_{m'}) \le nM^2/2;$$

consequently, $d_{min} \leq \lfloor \frac{1}{2}n\frac{M}{M-1} \rfloor$.