ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 31
Principles of Digital Communications
Homework 12
Dec. 21, 2020

Problem 1. Suppose $\mathcal{U}=\mathcal{V}$ are additive groups with group operation \oplus. (E.g., $\mathcal{U}=$ $\mathcal{V}=\{0, \ldots, K-1\}$, with modulo K addition.) Suppose the distortion measure $d(u, v)$ depends only on the difference between u and v and is given by $g(u \ominus v)$. Let $\phi(D)$ denote $\max H(Z): E[g(Z)] \leq D$.
a) Show that $\phi(D)$ is concave.
b) Let (U, V) be such that $E[d(U, V)] \leq D$. Show that $I(U ; V) \geq H(U)-\phi(D)$ by justifying
$I(U ; V)=H(U)-H(U \mid V)=H(U)-H(U \ominus V \mid V) \geq H(U)-H(U \ominus V) \geq H(U)-\phi(D)$.
c) Show that $R(D) \geq H(U)-\phi(D)$.
d) Assume now that U is uniform on \mathcal{U}. Show that $R(D)=H(U)-\phi(D)$.

Problem 2. Suppose $\mathcal{U}=\mathcal{V}=\mathbb{R}$, the set of real numbers, and $d(u, v)=(u-v)^{2}$. Show that for any U with variance $\sigma^{2}, R(D)$ satisfies

$$
h(U)-\frac{1}{2} \log (2 \pi e D) \leq R(D) \leq\left[\frac{1}{2} \log \left(\sigma^{2} / D\right)\right]^{+}
$$

Problem 3. Consider a two-way communication system where two parties communicate via a common output they both can observe and influence. Denote the common output by Y, and the signals emitted by the two parties by x_{1} and x_{2} respectively. Let $p\left(y \mid x_{1}, x_{2}\right)$ model the memoryless channel through which the two parties influence the output.

We will consider feedback-free block codes, i.e., we will use encoding and decoding functions of the form

$$
\begin{array}{ll}
\operatorname{enc}_{1}:\left\{1, \ldots, 2^{n R_{1}}\right\} \rightarrow \mathcal{X}_{1}^{n} & \operatorname{dec}_{1}: \mathcal{Y}^{n} \times\left\{1, \ldots, 2^{n R_{1}}\right\} \rightarrow\left\{1, \ldots, 2^{n R_{2}}\right\} \\
\operatorname{enc}_{2}:\left\{1, \ldots, 2^{n R_{2}}\right\} \rightarrow \mathcal{X}_{2}^{n} & \operatorname{dec}_{2}: \mathcal{Y}^{n} \times\left\{1, \ldots, 2^{n R_{2}}\right\} \rightarrow\left\{1, \ldots, 2^{n R_{1}}\right\}
\end{array}
$$

with which the parties encode their own message and decode the other party's messages. (Note that when a party is decoding the other party's message, it can make use of the knowledge of its own message).

We will say that the rate pair $\left(R_{1}, R_{2}\right)$ is achievable, if for any $\epsilon>0$, there exist encoders and decoders with the above form for which the average error probability is less than ϵ.

Consider the following 'random coding' method to construct the encoders:
(i) Choose probability distributions p_{j} on $\mathcal{X}_{j}, j=1,2$.
(ii) Choose $\left\{\operatorname{enc}_{1}\left(m_{1}\right)_{i}: m_{1}=1, \ldots, 2^{n R_{1}}, i=1, \ldots, n\right\}$ i.i.d., each having distribution as p_{1}. Similarly, choose $\left\{\operatorname{enc}_{2}\left(m_{2}\right)_{i}: m_{2}=1, \ldots, 2^{n R_{2}}, i=1, \ldots, n\right\}$ i.i.d., each having distribution as p_{2}, independently of the choices for enc ${ }_{1}$.

For the decoders we will use typicality decoders:
(i) Set $p\left(x_{1}, x_{2}, y\right)=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) p\left(y \mid x_{1}, x_{2}\right)$. Choose a small $\epsilon>0$ and consider the set T of ϵ-typical $\left(x_{1}^{n}, x_{2}^{n}, y^{n}\right)$'s with respect to p.
(ii) For decoder 1: given y^{n} and the correct m_{1}, dec_{1} will declare \hat{m}_{2} if it is the unique m_{2} for which $\left(\operatorname{enc}_{1}\left(m_{1}\right), \operatorname{enc}_{2}\left(m_{2}\right), y^{n}\right) \in T$. If there is no such $m_{2}, \operatorname{dec}_{1}$ outputs 0 . (Similar description applies to Decoder 2.)
(a) Given that m_{1} and m_{2} are the transmitted messages, show that $\left(\operatorname{enc}_{1}\left(m_{1}\right)\right.$, enc $\left._{2}\left(m_{2}\right), Y^{n}\right) \in T$ with high probability.
(b) Given that m_{1} and m_{2} are the transmitted messages, and $\tilde{m}_{1} \neq m_{1}$ what is the probability distribution of $\left(\operatorname{enc}_{1}\left(\tilde{m}_{1}\right)\right.$, enc $\left.\left(m_{2}\right), Y^{n}\right)$?
(c) Under the assumptions in (b) show that the

$$
\operatorname{Pr}\left\{\left(\operatorname{enc}_{1}\left(\tilde{m}_{1}\right), \operatorname{enc}_{2}\left(m_{2}\right), Y^{n}\right) \in T\right\} \doteq 2^{-n I\left(X_{1} ; X_{2} Y\right)} .
$$

(d) Show that all rate pairs satisfying

$$
R_{1} \leq I\left(X_{1} ; Y X_{2}\right), \quad R_{2} \leq I\left(X_{2} ; Y X_{1}\right)
$$

for some $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$ are achievable.
(e) For the case when X_{1}, X_{2}, Y are all binary and Y is the product of X_{1} and X_{2}, show that the achievable region is strictly larger than what we can obtain by 'half duplex communication' (i.e., the set of rates that satisfy $R_{1}+R_{2} \leq 1$.)

Problem 4. Let

$$
Z_{1}=\left\{\begin{array}{ll}
1, & p \\
0, & q
\end{array}, \quad Z_{2}= \begin{cases}1, & p \\
0, & q\end{cases}\right.
$$

and let $U=Z_{1} Z_{2}, V=Z_{1}+Z_{2}$. Assume Z_{1} and Z_{2} are independent. Note that we have a joint distribution induced on $\mathcal{U} \times \mathcal{V}$. Suppose that $\left(U_{i}, V_{i}\right)$ are i.i.d according to the distribution induced as above. Sender 1 compresses U^{n} at rate R_{1} and sender 2 compresses V^{n} at rate R_{2}.
(a) Find the Slepian-Wolf rate region for recovering $\left(U^{n}, V^{n}\right)$ at receiver.
(b) What is the residual uncertainty that receiver has about $\left(Z_{1}^{n}, Z_{2}^{n}\right)$? i.e. $H\left(Z_{1}^{n} Z_{2}^{n} \mid U^{n} V^{n}\right)$.

Problem 5. Suppose we are told that for any n and M, for any binary code with blocklength n, with M codewords, the minimum distance $d_{\text {min }}$ satisfies $d_{\text {min }} \leq d_{0}(M, n)$ where d_{0} is a specified upper bound on minimum distance.
(a) Show that any upper bound d_{0} can be improved to he following upper bound: for any n, M, for any binary code with blocklength n with M codewords

$$
d_{\min } \leq d_{1}(M, n)
$$

where $d_{1}(M, n)=\min _{k: 0 \leq k \leq n} d_{0}\left(\left\lceil M / 2^{k}\right\rceil, n-k\right)$.
(b) Consider the trivial bound

$$
d_{0}(M, n)= \begin{cases}n, & M \geq 2 \\ \infty, & M \leq 1\end{cases}
$$

What is the bound d_{1} constructed via (a) for this d_{0} ?
(c) Suppose we are given a binary code with M words of blocklength n. Fix $1 \leq i \leq n$ and let a_{1}, \ldots, a_{M} be the i th bits if the M codewords. Suppose M_{1} of the a_{m} 's are ' 1 ' and M_{0} of them are ' 0 '. Show that

$$
\sum_{m=1}^{M} \sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} d_{H}\left(a_{m}, a_{m}^{\prime}\right)=2 M_{0} M_{1} \leq M^{2} / 2
$$

(d) Show that for any binary code with $M \geq 2$ codewords x_{1}, \ldots, x_{M} of blocklength n

$$
M(M-1) d_{\text {min }} \leq \sum_{m=1}^{M} \sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} d_{H}\left(x_{m}, x_{m^{\prime}}\right) \leq n M^{2} / 2
$$

consequently, $d_{\min } \leq\left\lfloor\frac{1}{2} n \frac{M}{M-1}\right\rfloor$.

