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Problem 1.

(a) Given D1, D2 and 0 ≤ λ ≤ 1 we need to show that φ(D) ≥ λφ(D1) + (1− λ)φ(D2).
Suppose pZ∗1 and pZ∗2 be the distributions on Z that achieve the maximization that
define φ for D1 and D2, namely, φ(D1) = H(Z∗1) and φ(D2) = H(Z∗2) with E[g(Z∗1)] ≤
D1 and E[g(Z∗2)] ≤ D2. Consider now the distribution pZ∗ = λpZ∗1 + (1− λ)pZ∗2 . For
Z∗ having this distribution

E[g(Z∗)] =
∑
z

pZ∗(z)g(z) = λ
∑
z

pZ∗1 (z)g(z) + (1− λ)
∑
z

pZ∗2 (z)g(z)

= λE[g(Z∗1)] + (1− λ)E[g(Z∗2)] ≤ λD1 + (1− λ)D2 = D,

and because of the concavity of H, H(Z∗) ≥ λH(Z∗1) + (1 − λ)H(Z∗2) = λφ(D1) +
(1 − λ)φ(D2). As φ(D) is the maximum of H(Z) over all Z with E[g(Z)] ≤ D,
φ(D) ≥ H(Z∗).

(b) In the (in)equalities

I(U ;V )
(b1)
= H(U)−H(U |V )

(b2)
= H(U)−H(U 	 V |V )

(b3)

≥ H(U)−H(U 	 V )

(b4)

≥ H(U)− φ(D)

(b1) is by definition of mutual information, (b2) because for a given V , U and U 	V
are in one-to-one correspondence, (b3) because conditioning reduces entropy and (b4)
because Z = U 	 V has E[g(Z)] ≤ D.

(c) AsR(D) = min{I(U ;V ) : E[d(U, V )] ≤ D}, and by (b) for any U, V with E[d(U, V )] ≤
D we have I(U ;V ) ≥ H(U)− φ(D), the conclusion follows.

(d) Let Z be independent of U and have a distribution that achieves φ(D). Set V = U	Z.
Now,

pZ,V (z, v) = pZ,U(z, z ⊕ v) = pZ(z)pU(z ⊕ v) = pZ(z)/|U|.

By summing over z we see that V is uniformly distributed, and also that V is inde-
pendent of Z = U 	 V . Observe that the only inequalities in (b) were in (b3) and
(b4), but in this case they are both equalities: (b3) because of the independence of
Z = U 	 V and V , and (b4) because H(Z) = φ(D).

Problem 2. Suppose U, V satisfy E[(U − V )2] ≤ D, and set Z = U − V . As E[Z2] ≤ D,
we know h(Z) ≤ 1

2
log(2πeD). Also,

I(U ;V ) = h(U)− h(U |V ) = h(U)− h(Z|U) ≥ h(U)− h(Z) ≥ h(U)− 1
2

log(2πeD),



and consequently R(D) ≥ h(U)− 1
2

log(2πeD). We now turn to the upper bound on R(D).
Assume without loss of generality that E[U ] = 0 so that σ2 = E[U2]. If D ≥ σ2, we can
take V = 0 for which E[(U − V )2] = σ2 ≤ D, and I(U ;V ) = 0, so that R(D) = 0. So,
we need to only consider the case D < σ2. For such D, let Z be a zero mean Gaussian
independent of U with variance D(1−D/σ2) and set V = (1−D/σ2)U +Z. We will show
that for this choice of V we have E[(V − U)2] = D and I(U ;V ) ≤ 1

2
log(σ2/D), which will

then establish that R(D) ≤ 1
2

log(σ2/D). To that end observe that V −U = −(D/σ2)U+Z
and thus E[(V −U)2] = (D/σ2)2E[U2]+E[Z2] = D. Turning our attention now to I(U ;V ),
first compute E[V 2] = (1−D/σ2)2E[U2] +E[Z2] = σ2−D, so h(V ) ≤ 1

2
log(2πe(σ2−D)).

Furthermore,

h(V |U) = h(V − (1−D/σ2)U | U) = h(Z|U) = h(Z)

=
1

2
log(2πeVar(Z)) =

1

2
log(2πeD(1−D/σ2)).

Thus

I(U ;V ) = h(V )− h(V |U) ≤ 1

2
log

σ2 −D
D(1−D/σ2)

=
1

2
log(σ2/D).

Problem 3.

(a) Since the channel is memoryless and feedback-free transmission is assumed, from
code construction, it is obvious that (enc1(m1), enc2(m2), Y

n) is an i.i.d. length-n se-
quence of (X1, X2, Y )’s drawn from distribution p(x1, x2, y) = p1(x1)p2(x2)p(y|x1, x2).
Therefore, for sufficiently large n, the probability of this sequence being ε-typical is
as high as desired.

(b) Now, (enc1(m̃1), enc2(m2), Y
n) is an i.i.d. sequence (of length n) whose components

are distributed according to p1(x1)p(y, x2) where p(y, x2) =
∑

x′1
p1(x

′
1)p2(x2)p(y|x′1, x2).

(c) Pr{(enc1(m̃1), enc2(m2), Y
n) ∈ T} is the probability of a length n i.i.d. sequence Xn

1

whose elements have distribution p1 being jointly ε-typical (with respect to the dis-
tribution p1(x1)p(y, x2|x1) where p(y, x2|x1) = p(x2)p(y|x1, x2)) with an independent
length n sequence of (X2, Y )n whose elements have distribution p(y, x2) (defined in
(b)). Thus, as we have seen in the course,

Pr{(enc1(m̃1), enc2(m2), Y
n) ∈ T} .= 2−nI(X1,X2Y ).

(In the course we have seen this result for two random variables X and Y ; it is obvious
that we can replace X by X1 and Y by (X2Y ) to derive the desired result).

(d) From (a) we know that the probability of the correct message m1 not being on the
list of typical m1’s at decoder 2 is small, say at most ε/2.

From (c), the probability of each incorrect m̃1 being on that list (at decoder 2) is
equal (up to sub-exponential factors) to 2−nI(X1;X2Y ). Since there are M − 1 ≤ 2nR1

such m̃1’s, the probability of having an incorrect message on the list is, by the union
bound, at most 2n[R1−I(X1;X2Y )] which is exponentially small in n provided that R1 <
I(X1;X2Y ). Thus, for large enough n, this probability is also smaller than ε/2.

Consequently, the average probability of decoding error at decoder 2 is at most ε
provided that R1 < I(X1, X2Y ).

By symmetry, the average probability of decoding error at decoder 1 is smaller than
ε if R2 < I(X2, X1, Y ).

2



Since the average probability of error (over the generation of codebooks) is small (for
rate pairs (R1, R2) satisfying R1 < I(X1;Y,X2) and R2 < I(X2;Y,X1)), there exist
a pair of codebooks of rates (R1, R2) in the ensemble for which the average error
probability is small, thus such (R1, R2)’s are achievable.

(e) Firstly note that since X1 and X2 are independent, I(X1;Y X2) = I(X1;Y |X2) (sim-
ilarly I(X2;Y X1) = I(X2;Y |X1)).

Since Y = X1 × X2, conditioned on {X2 = 0}, Y contains no information about
X1, whereas conditioned on {X2 = 1}, Y = X1. Assuming Pr{X1 = 1} = p1 and
Pr{X2 = 1} = p2,

I(X1;Y |X2) = Pr{X2 = 0}I(X1;Y |X2 = 0) + Pr{X2 = 1}I(X1;Y |X2 = 1)

= 0 + p2h2(p1)

where h2(·) is the binary entropy function. Similarly it follows that I(X2;Y |X1) =
p1h2(p2).

Suppose p1 = p2 = p, then all rates (R1, R2) satisfying

R1 < ph2(p) R2 < ph2(p)

are achievable. In particular, ph2(p) ≥ 1
2

for some p ≥ 1
2

(it evaluates to 1
2

at p = 1
2

but it is increasing, so it will go above 1
2

as p increases). The set of achievable rate
pairs corresponding to such p’s violate R1 +R2 < 1.

Problem 4. (a) The Slepian-Wolf region for U and V is given as the set of rate pairs
(Ru, Rv) satisfying

Ru > H(U |V )

Rv > H(V |U)

Ru +Rv > H(UV )

The joint distribution of (U, V ) is given as

P (U = u, V = v) =


p2 (u, v) = (1, 2)

2pq (u, v) = (0, 1)

q2 (u, v) = (0, 0)

.

Therefore,

H(UV ) = H(2pq, p2, q2)

H(V ) = H(2pq, p2, q2)

H(U) = H(p2, 2pq + q2)

and

H(U |V ) = H(UV )−H(V ) = 0

H(V |U) = H(UV )−H(U) = H(p2, 2pq, q2)−H(p2, 2pq + q2) = (2pq + q2)h2

(
2pq

2pq + q2

)

where h2(.) is the binary entropy function. The rate region can be depicted as follows.
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Rv

Ru

H(UV )H(V |U)

H(U)

(b) H(Zn
1Z

n
2 |UnV n) = nH(Z1Z2|UV ) = n

∑
u,vH(Z1Z2|U = u, V = v)P (U = u, V = v).

Knowing the (u, v) pair, the only uncertainty in (Z1, Z2) pair occurs when u = 0 and
v = 1. Moreover P (Z1 = 1, Z2 = 0|U = 0, V = 1) = P (Z1 = 0, Z2 = 1|U = 0, V =
1) = 1/2. Thus,

H(Zn
1Z

n
2 |UnV n) = nH(Z1Z2|U = 0, V = 1)P (U = 0, V = 1) = 2npq

Problem 5. (a) Given a code C with M codewords and blocklength n, and 0 ≤ k ≤ n,
partition the codewords into 2k groups according to their first k bits. The group
with the largest number of codewords will contain at least M ′ = dM/2ke codewords.
The minimum distance within that group is upper bounded by d0(M

′, n − k) since
all codewords in the group agree in their first k bits. Thus the minimum distance
of the code C is upper bounded by d0(dM/2ke, n − k). Since this is true for each
k ∈ {0, . . . , n} we conclude that dmin ≤ d1(M,n).

(b) With d0(M,n) =

{
n M ≤ 2

∞ M ≤ 1
the minimum over k is obtained by choosing k as

large as possible while keeping M/2k > 1. Thus the bound d1 says ”dmin ≤ n − k
when M > 2kn” which is the Singleton bound we derived in class.

(c) Each pair (m,m′) contributes 1 to the sum when am = 0 and am′ = 1 or when am = 1
and am′ = 0. There are M0M1 pairs of the first type and M1M0 pairs of the second
type. Thus the sum equals 2M0M1. As M0 +M1 = M , we have M0M1 ≤M2/4, from
which the final inequality follows.

(d) As dH(xm,xm′) ≥ dmin for every m 6= m′, the first inequality follows by summing
both sides. For the second write dH(xm,xm′) =

∑n
i=1 dH(xmi, xm′i) to obtain

M∑
m=1

M∑
m′=1
m′ 6=m

dH(xm,xm′) =
n∑

i=1

M∑
m=1

M∑
m′=1
m′ 6=m

dH(xmi, xm′i).

By (c) for each i the inner double-sum is upper bounded by M2/2 and the conclusion
follows.
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