ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 33
Principles of Digital Communications
Homework 13
Dec. 21, 2020

Problem 1. (a) Suppose U and V are binary random variables. The joint distribution induced on (U, V) is given as

$$
p_{U V}(u, v)= \begin{cases}1 / 3, & (u, v)=(0,0) \\ 1 / 3, & (u, v)=(1,0) \\ 1 / 3, & (u, v)=(1,1) \\ 0, & (u, v)=(0,1)\end{cases}
$$

Find the Slepian-Wolf rate region for (U, V) pair.
(b) Now suppose we have a binary additive MAC channel with inputs X_{1}, X_{2} and output Y. The random variables X_{1} and X_{2} can take values in the set $\{0,1\}$ and Y can take values in the set $\{0,1,2\}$. The relationship between X_{1}, X_{2} and Y is given as

$$
Y=X_{1}+X_{2} .
$$

Find the capacity region for this MAC.
(c) Now, the aim is to design a communication system that first compresses the source into a bitstream and then employs some channel coding technique to achieve reliable communication. The scheme is given as follows.

Here, SW-enc represents Slepian-Wolf encoder for the source U, V of length L which outputs a bitstream of length $L R_{U}, L R_{V}$ respectively. Later, the bitstreams J_{u} and J_{v} are encoded by channel encoders (Ch-enc) and then passed through the multiple access channel. As usual, from Y^{N}; bitstreams \hat{J}_{u} and \hat{J}_{v} are estimated by a channel decoder. Finally, the estimated bitstreams are decoded by Slepian-Wolf decoders to obtain U^{L} and V^{L}.
For the sources described in part (a) and channel described in part (b), what is the maximum value that L / N can take for a reliable communication?
(d) Consider now an uncoded scheme with the same sources and same channel where $X_{1}=U$ and $X_{2}=V$. Note that in this scheme, $L=N=1$. Can (U, V) be recovered from Y ? Can the value L / N of this scheme be achieved by schemes as in part (c)?

Problem 2. Consider the multiplicative multiple access channel $Y=X_{1} X_{2}$. Find the capacity region when
(a) $X_{1} \in\{0,1\}, X_{2} \in\{1,2\}$.
(b) $X_{1} \in\{0,1\}, X_{2} \in\{1,2,3\}$.
(c) $X_{1} \in\{1,2\}, X_{2} \in\{1,2\}$.

