ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 34
Principles of Digital Communications
Solutions to Homework 13
Dec. 21, 2020

Problem 1.

(a) The Slepian-Wolf rate region for (U, V) pair is given as

$$
\begin{aligned}
R_{u} & \geq H(U \mid V)=\log 3-h_{2}(1 / 3)=2 / 3 \\
R_{v} & \geq H(V \mid U)=\log 3-h_{2}(1 / 3)=2 / 3 \\
R_{u}+R_{v} & \geq H(U V)=\log 3
\end{aligned}
$$

and the region can be drawn as

where $h_{2}($.$) is the binary entropy function.$
(b) The rate region of a MAC with input $\left(X_{1}, X_{2}\right)$ having a probability distribution $p\left(x_{1} x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$ is given by the following polymatroid.

$$
\begin{array}{r}
R_{1} \leq I\left(X_{1} ; Y \mid X_{2}\right) \\
R_{2} \leq I\left(X_{2} ; Y \mid X_{1}\right) \\
R_{1}+R_{2} \leq I\left(X_{1} X_{2} ; Y\right) \tag{3}
\end{array}
$$

Note that $I\left(X_{1} ; Y \mid X_{2}\right)=H\left(Y \mid X_{2}\right)-H\left(Y \mid X_{1} X_{2}\right)=H\left(Y \mid X_{2}\right)=H\left(X_{1}\right)$. Similarly, $I\left(X_{2} ; Y \mid X_{1}\right)=H\left(X_{2}\right)$ and $I\left(X_{1} X_{2} ; Y\right)=H(Y)-H\left(Y \mid X_{1} X_{2}\right)=H(Y)$. Let $\alpha=$ $\operatorname{Pr}\left(X_{1}=0\right)$ and $\beta=\operatorname{Pr}\left(X_{2}=0\right)$. Clearly $H\left(X_{1}\right)$ and $H\left(X_{2}\right)$ are maximized when $\alpha=\beta=1 / 2$. Moreover for any value of $\beta, H(Y)=H\left(X_{1}+X_{2}\right)$ is a concave function of α and is invariant if we replace α with $1-\alpha$. Therefore, $\alpha=1 / 2$ maximizes $H(Y)$ for any β and by symmetry, $\alpha=\beta=1 / 2$ simultaneously maximizes the right hand sides of (1), (2), (3). Then we have the following polymatroid as the capacity region for this MAC.

$$
\begin{aligned}
R_{1} & \leq 1 \\
R_{2} & \leq 1 \\
R_{1}+R_{2} & \leq 3 / 2
\end{aligned}
$$

(c) For this scheme to work, there must exist a $\left(R_{u}, R_{v}\right)$ pair in the SW region such that $L / N\left(R_{u}, R_{v}\right)$ belongs to the MAC region. As sum of rates is at least $\log (3)$ in the SW region but at most $3 / 2$ in the MAC region, L / N can be at most $\frac{3 / 2}{\log 3} \approx 0.946$. Moreover, it can be seen that for $L / N \leq \frac{3 / 2}{\log 3}$, the scaled SW region does intersect the MAC region.
(d) With the uncoded scheme, we have $X_{1}=U$ and $X_{2}=V$ and thus $Y=U+V$. Since U, V are binary and $(U, V)=(0,1)$ is not possible, the value of Y completely determines (U, V). In this scheme $L / N=1 / 1>0.946$. Note that in part (c), the maximum value of L / N was found as 0.946 . This shows that uncoded schemes can be strictly more efficient in the multi-user settings than coded schemes - something we knew cannot happen in the single user case.

Problem 2.

(a) Note that no matter how user 2 communicates, we can recover X_{1} exactly from Y. Let $X_{1} \sim \operatorname{Bern}(\alpha)$. Then X_{1} can communicate with a rate less than $h_{2}(\alpha)$. From the side of X_{2}, the channel is seen as

$$
Y= \begin{cases}X_{2}, & \text { w.p. } \alpha \\ 0, & \text { w.p. } 1-\alpha\end{cases}
$$

which is essentially a BEC with erasure probability $1-\alpha$. Therefore, X_{2} can communicate with a rate at most α and the following region is obtained.

$$
\mathcal{R}(\alpha)=\left\{\left(R_{1}, R_{2}\right): R_{1} \leq h_{2}(\alpha), R_{2} \leq \alpha\right\}
$$

Note that the constraint for $R_{1}+R_{2}$ is automatically satisfied as $I\left(X_{1} X_{2} ; Y\right)=$ $H(Y)=\alpha+h_{2}(\alpha)$. Then the capacity region \mathcal{R} is the convex hull of the union of $\mathcal{R}(\alpha)$'s.

$$
\mathcal{R}=\operatorname{conv}\left(\bigcup_{\alpha} \mathcal{R}(\alpha)\right)
$$

The region \mathcal{R} is depicted as follows.

(b) The only difference is that the channel from X_{2} to Y is a ternary erasure channel. Therefore

$$
\mathcal{R}(\alpha)=\left\{\left(R_{1}, R_{2}\right): R_{1} \leq h_{2}(\alpha), R_{2} \leq \alpha \log 3\right\}
$$

and the rest is same as part (a).
(c) Taking the logarithm of both sides, we have $\tilde{Y}_{\tilde{X}}=\tilde{X}_{1}+\tilde{X}_{2}$, where $\tilde{X}_{1}=\log X_{1}$, $\tilde{X}_{2}=\log X_{2}$, and $\tilde{Y}=\log Y$. Note that \tilde{X}_{1} and \tilde{X}_{2} can take values in $\{0,1\}$ thus this is essentially a binary adder MAC. This capacity region is already found in Problem 1, part (b).

