Exercise 1. We need to show that the injective immersion F is a homeomorphism onto its image. Since F is smooth, it is continuous. Let us denote \tilde{F} the map where we restrict the codomain of F to the set $F(M)$, i.e. $\tilde{F}: N \rightarrow F(M): x \rightarrow F(x)$. Note that \tilde{F} is a continuous bijection (where the image has the subspace topology of M). We know that a continuous bijection from a compact topological space to a Hausdorff topological space is open. Thus we can conclude that \tilde{F} is open in the sense of subspace topology of $\tilde{F}(M)$. Hence \tilde{F}^{-1} is continuous. Therefore F is a homeomorphism onto its image.

Exercise 2.

(i) First notice that since each S^{1} is embedded in \mathbb{R}^{2} then \mathbb{T}^{2} may be embedded in \mathbb{R}^{4}. However below we prove that we can think of the torus \mathbb{T}^{2} as the surface of a "doughnut" in \mathbb{R}^{3}. We use the smooth atlas on S^{1} given by graph coordinates, i.e. we have 4 local charts: $\left\{\left(U_{i, \pm}, \varphi_{i, \pm}\right)\right\}_{i=1,2}$, where

$$
U_{i, \pm}=\left\{\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}: u_{i} \in(-1,1), u_{j}= \pm \sqrt{1-u_{i}^{2}}\right\}, \quad \text { and } \quad \varphi_{i, \pm}\left(u_{1}, u_{2}\right)=u_{i}
$$

Recall that the inverse of the charts are $\left(\varphi_{1, \pm}\right)^{-1}(u)=\left(u, \pm \sqrt{1-u^{2}}\right)$, and $\left(\varphi_{2, \pm}\right)^{-1}(u)=$ $\left(\pm \sqrt{1-u^{2}}, u\right)$. Let us use the variables u_{i} for the first circle and the variables v_{i} for the second circle, then the natural smooth structure on \mathbb{T}^{2} is composed of 8 local charts: $\left\{\left(U_{i, \pm} \times V_{j, \pm}, \varphi_{i, \pm} \times \varphi_{j, \pm}\right)\right\}_{i, j=1,2}$. Consider the function F as a function from \mathbb{R}^{4} to \mathbb{R}^{3} :

$$
F\left(u_{1}, u_{2}, v_{1}, v_{2}\right)=\left(\left(2+u_{1}\right) v_{1},\left(2+u_{1}\right) v_{2}, u_{2}\right)
$$

The coordinates representation of F w.r.t the first chart is

$$
\begin{array}{r}
\hat{F}:=F \circ\left(\left(\varphi_{1,+}\right)^{-1} \times\left(\varphi_{1,+}\right)^{-1}\right):(-1,1)^{2} \rightarrow \mathbb{R}^{3} \\
\hat{F}(u, v)=\left((2+u) v,(2+u) \sqrt{1-v^{2}}, \sqrt{1-u^{2}}\right)
\end{array}
$$

which has Jacobian matric

$$
J_{\hat{F}}(u, v)=\left(\begin{array}{ccc}
v & \sqrt{1-v^{2}} & -\frac{u}{\sqrt{1-v^{2}}} \\
2+u & -(2+u) \frac{v}{\sqrt{1-v^{2}}} & 0
\end{array}\right)
$$

The rank of this matrix is maximal: $\operatorname{rank} J_{\hat{F}}(u, v)=2$ for every $(u, v) \in(-1,1)^{2}$. Analogously one can write the coordinates representation of F w.r.t the other charts and show that the rank of the Jacobian is 2 , hence F is an immersion. Moreover F is injective and since $S^{1} \times S^{1}$ is compact, from Exercise 1 we obtain the F is an embedding. Then $F\left(\mathbb{T}^{2}\right)$ is an embedded submanifold of \mathbb{R}^{3} since it is the image of an embedding.
(ii) From the previous point we know that we can think of $S=F\left(\mathbb{T}^{2}\right)$ as the surface in \mathbb{R}^{3} parametrized by

$$
\left\{\begin{array}{l}
x=(2+\cos \varphi) \cos \theta \\
y=(2+\cos \varphi) \sin \theta \\
z=\sin \varphi
\end{array}\right.
$$

Then we obtain $f(x, y, z)=(2-(2+\cos \varphi))^{2}+\sin ^{2} \varphi=1$, hence $S \subset f^{-1}(1)$. To show that the level surface does not contain any points other than those in S set $u=\sqrt{x^{2}+y^{2}}-2$. Then the level surface is given by $u^{2}+z^{2}=1$ which is the equation of a circle of radius 1 in (u, z). Hence, we can find φ such that $u=\cos (\varphi)$ and $z=\sin \varphi$. Then we also have $(u+2)^{2}=x^{2}+y^{2}$ which is the equation of a circle of radius $u+2$ in (x, y) and so we can find θ such that $x=(u+2) \cos \theta$ and $y=(u+2) \sin \theta$. Therefore $S=f^{-1}(1)$

We have to show that f has rank 1 at all points of S, that is that $J_{f}=\nabla f \neq 0$ on S. However

$$
\nabla f(x, y, z)=\left(\frac{x \sqrt{x^{2}+y^{2}}-2 x}{\sqrt{x^{2}+y^{2}}}, \frac{y \sqrt{x^{2}+y^{2}}-2 y}{\sqrt{x^{2}+y^{2}}}, 2 z\right)
$$

is not well defined along the z-axis. Thus let us consider $\tilde{f}=\left.f\right|_{\mathbb{R}^{3} \backslash\{z \text {-axis }\}}$, then we still have that $S=\tilde{f}^{-1}(1)$ and moreover \tilde{f} is smooth and has constant rank 1 on $\mathbb{R}^{3} \backslash\{z$-axis $\}$. From the Constant Rank Level Set Theorem we deduce that S is an embedded submanifold of $\mathbb{R}^{3} \backslash\{z$-axis $\}$. This implies that S is an embedded submanifold of \mathbb{R}^{3}.

Exercise 3. As in Exercise 1, we denote $\tilde{\sigma}: N \rightarrow \sigma(N): x \rightarrow \sigma(x)$ be the map where we restrict the codomain of σ to the set $\sigma(N)$. Since σ is a smooth embedding, then $\tilde{\sigma}$ is a smooth map as well. Recall that the natural smooth structure on $\sigma(N)$ is the one obtained by slice charts, i.e. if \mathcal{A}^{\prime} is the smooth structure of M then the smooth structure on $\sigma(N)^{1}$ is

$$
\mathcal{A}=\left\{(V, \psi): V=U \cap \sigma(N), \psi=\left.\pi \circ \varphi\right|_{V}, \text { where }(U, \varphi) \in \mathcal{A}^{\prime} \text { is a slice chart }\right\}
$$

Let $p \in N$. We want to look at the coordinate representation of $\tilde{\sigma}$ in a neighborhood of p with respect to appropriate charts. Let (W, θ) be a smooth chart for $N, p \in N$. Let (U, φ) be a slice chart for $\sigma(N)$ in $M, \sigma(p) \in U$, and let (V, ψ) be the corresponding chart on $\sigma(N)$ as defined above, i.e. $V=U \cap \sigma(N), \psi=\left.\pi \circ \varphi\right|_{V}$. Then the coordinate representations for σ and $\tilde{\sigma}$ respectively are

$$
\begin{aligned}
\varphi \circ \sigma \circ \theta^{-1}: \theta\left(W \cap \sigma^{-1}(U)\right) \subset \mathbb{R}^{k} & \rightarrow \varphi(U \cap \sigma(W)) \subset \mathbb{R}^{m} \\
\left(x^{1}, \ldots, x^{k}\right) & \mapsto\left(y^{1}, \ldots, y^{k}, 0, \ldots, 0\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\psi \circ \tilde{\sigma} \circ \theta^{-1}: \theta\left(W \cap \sigma^{-1}(U)\right) \subset \mathbb{R}^{k} & \rightarrow \varphi(U \cap \sigma(W)) \subset \mathbb{R}^{k} \\
\left(x^{1}, \ldots, x^{k}\right) & \mapsto\left(y^{1}, \ldots, y^{k}\right)
\end{aligned}
$$

for some functions y^{i}, which are smooth, because σ is smooth by assumption. Here $k=\operatorname{dim} N=\operatorname{dim} \sigma(N)$, and $m=\operatorname{dim} M$. Note that we have implicitly used here that $\sigma^{-1}(U)=\sigma^{-1}(U \cap \sigma(N))=\tilde{\sigma}^{-1}(V)$. In particular, from the above we see that the coordinate representation of $\tilde{\sigma}$ is smooth. Moreover, the rank of the Jacobian

$$
D\left(\varphi \circ \sigma \circ \theta^{-1}\right)(x)
$$

is maximal, i.e. equal to k, for all points $x \in W \cap \sigma^{-1}(U)$ (actually we only need $x=\theta(p)$ here), because σ is an immersion. From the above coordinate representation we see that the last $m-k$ rows of this matrix are 0 and the upper $k \times k$ submatrix is precisely the Jacobian of the coordinate representation of $\tilde{\sigma}$, hence

$$
\operatorname{rank} D\left(\psi \circ \tilde{\sigma} \circ \theta^{-1}\right)(x)=k
$$

i.e. it is a regular matrix. In particular this holds for $x=\theta(p)$. Therefore, by the implicit function theorem $\psi \circ \tilde{\sigma} \circ \theta^{-1}$ is a local diffeomorphism at p and since p was arbitrary, $\tilde{\sigma}$ is a local diffeomorphism on N. Since $\tilde{\sigma}$ is a bijection, $\tilde{\sigma}$ is a diffeomorphism. So σ is diffeomorphism onto its image $\sigma(N)$.

[^0]
Exercise 4.

(i) The gradient of f,

$$
\nabla f(x, y)=\left(3 x^{2}, 3 y^{2}\right)
$$

vanishes precisely at the origin $(x, y)=(0,0)$. Thus $f_{*}: T_{p} \mathbb{R}^{2} \rightarrow T_{f(p)} \mathbb{R}$ has rank 0 if and only if $p=(x, y)=(0,0)$. Thus every point $c \in \mathbb{R}$ is a regular value except $c=1$.

By the constant rank theorem, each level set $f^{-1}(\{c\})$ with $c \neq 1$ is a smooth embedded submanifold in \mathbb{R}^{2}. As for the level set $f^{-1}(\{1\})$ we have to argue differently. The theorem does not say that $f^{-1}(\{1\})$ is not a smooth submanifold. We have to study this case separately. Observe that in this case one has

$$
f^{-1}(\{1\})=\left\{x^{3}+y^{3}=0\right\}=\{x=-y\}
$$

i.e., $f^{-1}(\{1\})$ is a line going through the origin. Thus, also $f^{-1}(\{1\})$ is a smooth submanifold of \mathbb{R}^{2}. Summing up, all level sets of this function are smooth submanifolds.
(ii) Let us apply Proposition 3.1.15, which holds if c is a regular value. Thus suppose $c \neq 1$, then we obtain $T_{p} S=\left.\operatorname{ker} f_{*}\right|_{p}$. Therefore if $X=\left(X_{1}, X_{2}\right) \in \mathbb{R}^{2} \cong T_{p} \mathbb{R}^{2}$, then $\left.f_{*}\right|_{p} X=3 p_{x}^{2} X_{1}+3 p_{y}^{2} X_{2}$, where $p=\left(p_{x}, p_{y}\right)$. Hence

$$
\left.\operatorname{ker} f_{*}\right|_{p}=\left\{\left(X_{1}, X_{2}\right): p_{x}^{2} X_{1}+p_{y}^{2} X_{2}=0\right\}
$$

where $p_{x}^{3}+p_{y}^{3}-1=c$. When $c=1$ we already notice that $S=\{x=-y\}$, thus $T_{p} S=S$.

[^0]: ${ }^{1} \pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is the projection onto first k-components

