Exercise 1. We need to show that the injective immersion F is a homeomorphism onto its image. Since F is smooth, it is continuous. Let us denote \tilde{F} the map where we restrict the codomain of F to the set F(M), i.e. $\tilde{F}: N \to F(M): x \to F(x)$. Note that \tilde{F} is a continuous bijection (where the image has the subspace topology of M). We know that a continuous bijection from a compact topological space to a Hausdorff topological space is open. Thus we can conclude that \tilde{F} is open in the sense of subspace topology of $\tilde{F}(M)$. Hence \tilde{F}^{-1} is continuous. Therefore F is a homeomorphism onto its image.

Exercise 2.

(i) First notice that since each S^1 is embedded in \mathbb{R}^2 then \mathbb{T}^2 may be embedded in \mathbb{R}^4 . However below we prove that we can think of the torus \mathbb{T}^2 as the surface of a "doughnut" in \mathbb{R}^3 . We use the smooth atlas on S^1 given by graph coordinates, i.e. we have 4 local charts: $\{(U_{i,\pm}, \varphi_{i,\pm})\}_{i=1,2}$, where

$$U_{i,\pm} = \{(u_1, u_2) \in \mathbb{R}^2 : u_i \in (-1, 1), \ u_j = \pm \sqrt{1 - u_i^2}\}, \text{ and } \varphi_{i,\pm}(u_1, u_2) = u_i$$

Recall that the inverse of the charts are $(\varphi_{1,\pm})^{-1}(u) = (u, \pm \sqrt{1-u^2})$, and $(\varphi_{2,\pm})^{-1}(u) = (\pm \sqrt{1-u^2}, u)$. Let us use the variables u_i for the first circle and the variables v_i for the second circle, then the natural smooth structure on \mathbb{T}^2 is composed of 8 local charts: $\{(U_{i,\pm} \times V_{j,\pm}, \varphi_{i,\pm} \times \varphi_{j,\pm})\}_{i,j=1,2}$. Consider the function F as a function from \mathbb{R}^4 to \mathbb{R}^3 :

 $F(u_1, u_2, v_1, v_2) = ((2+u_1)v_1, (2+u_1)v_2, u_2)$

The coordinates representation of F w.r.t the first chart is

$$\hat{F} := F \circ \left((\varphi_{1,+})^{-1} \times (\varphi_{1,+})^{-1} \right) : (-1,1)^2 \to \mathbb{R}^3$$
$$\hat{F}(u,v) = \left((2+u)v, (2+u)\sqrt{1-v^2}, \sqrt{1-u^2} \right)$$

which has Jacobian matric

$$J_{\hat{F}}(u,v) = \begin{pmatrix} v & \sqrt{1-v^2} & -\frac{u}{\sqrt{1-v^2}} \\ 2+u & -(2+u)\frac{v}{\sqrt{1-v^2}} & 0 \end{pmatrix}$$

The rank of this matrix is maximal: rank $J_{\hat{F}}(u, v) = 2$ for every $(u, v) \in (-1, 1)^2$. Analogously one can write the coordinates representation of F w.r.t the other charts and show that the rank of the Jacobian is 2, hence F is an immersion. Moreover F is injective and since $S^1 \times S^1$ is compact, from Exercise 1 we obtain the F is an embedding. Then $F(\mathbb{T}^2)$ is an embedded submanifold of \mathbb{R}^3 since it is the image of an embedding.

(ii) From the previous point we know that we can think of $S = F(\mathbb{T}^2)$ as the surface in \mathbb{R}^3 parametrized by

$$\begin{cases} x = (2 + \cos \varphi) \cos \theta \\ y = (2 + \cos \varphi) \sin \theta \\ z = \sin \varphi \end{cases}$$

Then we obtain $f(x, y, z) = (2 - (2 + \cos \varphi))^2 + \sin^2 \varphi = 1$, hence $S \subset f^{-1}(1)$. To show that the level surface does not contain any points other than those in S set $u = \sqrt{x^2 + y^2} - 2$. Then the level surface is given by $u^2 + z^2 = 1$ which is the equation of a circle of radius 1 in (u, z). Hence, we can find φ such that $u = \cos(\varphi)$ and $z = \sin \varphi$. Then we also have $(u+2)^2 = x^2 + y^2$ which is the equation of a circle of radius u + 2 in (x, y) and so we can find θ such that $x = (u+2)\cos\theta$ and $y = (u+2)\sin\theta$. Therefore $S = f^{-1}(1)$ We have to show that f has rank 1 at all points of S, that is that $J_f = \nabla f \neq 0$ on S. However

$$\nabla f(x,y,z) = \left(\frac{x\sqrt{x^2 + y^2} - 2x}{\sqrt{x^2 + y^2}}, \frac{y\sqrt{x^2 + y^2} - 2y}{\sqrt{x^2 + y^2}}, 2z\right)$$

is not well defined along the z-axis. Thus let us consider $\tilde{f} = f|_{\mathbb{R}^3 \setminus \{z-\text{axis}\}}$, then we still have that $S = \tilde{f}^{-1}(1)$ and moreover \tilde{f} is smooth and has constant rank 1 on $\mathbb{R}^3 \setminus \{z-\text{axis}\}$. From the Constant Rank Level Set Theorem we deduce that S is an embedded submanifold of $\mathbb{R}^3 \setminus \{z-\text{axis}\}$. This implies that S is an embedded submanifold of \mathbb{R}^3 .

Exercise 3. As in Exercise 1, we denote $\tilde{\sigma} : N \to \sigma(N) : x \to \sigma(x)$ be the map where we restrict the codomain of σ to the set $\sigma(N)$. Since σ is a smooth embedding, then $\tilde{\sigma}$ is a smooth map as well. Recall that the natural smooth structure on $\sigma(N)$ is the one obtained by slice charts, i.e. if \mathcal{A}' is the smooth structure of M then the smooth structure on $\sigma(N)^{-1}$ is

$$\mathcal{A} = \{(V,\psi): V = U \cap \sigma(N), \ \psi = \pi \circ \varphi \big|_{V}, \text{ where } (U,\varphi) \in \mathcal{A}' \text{ is a slice chart} \}$$

Let $p \in N$. We want to look at the coordinate representation of $\tilde{\sigma}$ in a neighborhood of p with respect to appropriate charts. Let (W, θ) be a smooth chart for $N, p \in N$. Let (U, φ) be a slice chart for $\sigma(N)$ in $M, \sigma(p) \in U$, and let (V, ψ) be the corresponding chart on $\sigma(N)$ as defined above, i.e. $V = U \cap \sigma(N), \ \psi = \pi \circ \varphi|_V$. Then the coordinate representations for σ and $\tilde{\sigma}$ respectively are

$$\begin{aligned} \varphi \circ \sigma \circ \theta^{-1} : \theta(W \cap \sigma^{-1}(U)) \subset \mathbb{R}^k &\to \quad \varphi(U \cap \sigma(W)) \subset \mathbb{R}^m \\ (x^1, \dots, x^k) &\mapsto \quad (y^1, \dots, y^k, 0, \dots, 0) \end{aligned}$$

and

$$\begin{split} \psi \circ \tilde{\sigma} \circ \theta^{-1} : \theta(W \cap \sigma^{-1}(U)) \subset \mathbb{R}^k & \to \quad \varphi(U \cap \sigma(W)) \subset \mathbb{R}^k \\ (x^1, \dots, x^k) & \mapsto \quad (y^1, \dots, y^k) \end{split}$$

for some functions y^i , which are smooth, because σ is smooth by assumption. Here $k = \dim N = \dim \sigma(N)$, and $m = \dim M$. Note that we have implicitly used here that $\sigma^{-1}(U) = \sigma^{-1}(U \cap \sigma(N)) = \tilde{\sigma}^{-1}(V)$. In particular, from the above we see that the coordinate representation of $\tilde{\sigma}$ is smooth. Moreover, the rank of the Jacobian

$$D(\varphi \circ \sigma \circ \theta^{-1})(x)$$

is maximal, i.e. equal to k, for all points $x \in W \cap \sigma^{-1}(U)$ (actually we only need $x = \theta(p)$ here), because σ is an immersion. From the above coordinate representation we see that the last m - k rows of this matrix are 0 and the upper $k \times k$ submatrix is precisely the Jacobian of the coordinate representation of $\tilde{\sigma}$, hence

$$\operatorname{rank} D(\psi \circ \tilde{\sigma} \circ \theta^{-1})(x) = k,$$

i.e. it is a regular matrix. In particular this holds for $x = \theta(p)$. Therefore, by the implicit function theorem $\psi \circ \tilde{\sigma} \circ \theta^{-1}$ is a local diffeomorphism at p and since p was arbitrary, $\tilde{\sigma}$ is a local diffeomorphism on N. Since $\tilde{\sigma}$ is a bijection, $\tilde{\sigma}$ is a diffeomorphism. So σ is diffeomorphism onto its image $\sigma(N)$.

 $^{{}^{1}\}pi:\mathbb{R}^{n}\to\mathbb{R}^{k}$ is the projection onto first k-components

Exercise 4.

(i) The gradient of f,

$$\nabla f(x,y) = (3x^2, 3y^2),$$

vanishes precisely at the origin (x, y) = (0, 0). Thus $f_* : T_p \mathbb{R}^2 \to T_{f(p)} \mathbb{R}$ has rank 0 if and only if p = (x, y) = (0, 0). Thus every point $c \in \mathbb{R}$ is a regular value except c = 1.

By the constant rank theorem, each level set $f^{-1}(\{c\})$ with $c \neq 1$ is a smooth embedded submanifold in \mathbb{R}^2 . As for the level set $f^{-1}(\{1\})$ we have to argue differently. The theorem does not say that $f^{-1}(\{1\})$ is not a smooth submanifold. We have to study this case separately. Observe that in this case one has

$$f^{-1}(\{1\}) = \{x^3 + y^3 = 0\} = \{x = -y\}$$

i.e., $f^{-1}(\{1\})$ is a line going through the origin. Thus, also $f^{-1}(\{1\})$ is a smooth submanifold of \mathbb{R}^2 . Summing up, all level sets of this function are smooth submanifolds.

(ii) Let us apply Proposition 3.1.15, which holds if c is a regular value. Thus suppose $c \neq 1$, then we obtain $T_p S = \ker f_*|_p$. Therefore if $X = (X_1, X_2) \in \mathbb{R}^2 \cong T_p \mathbb{R}^2$, then $f_*|_p X = 3p_x^2 X_1 + 3p_y^2 X_2$, where $p = (p_x, p_y)$. Hence

ker
$$f_*|_p = \{(X_1, X_2) : p_x^2 X_1 + p_y^2 X_2 = 0\}$$

where $p_x^3 + p_y^3 - 1 = c$. When c = 1 we already notice that $S = \{x = -y\}$, thus $T_p S = S$.