Exercise 1.

(1) Let \mathcal{A} by any smooth atlas on M, wlog we assume the charts in \mathcal{A} all have connected domains. For each chart $\left(U, x^{i}\right)$ in \mathcal{A}, a nowhere vanishing n-form $\omega \in \Omega^{n}(M)$ can be expressed as

$$
\omega=f d x^{1} \wedge \ldots, \wedge d x^{n} \quad \text { in } U
$$

Since $f \in C^{\infty}(U)$ and U is connected, we know f can't change sign in U. For each coordinates chart, if $f<0$ in U, we replace x^{1} by $-x^{1}$ and denote the new atlas \mathcal{A}^{\prime}. We show that \mathcal{A}^{\prime} is consistently oriented atlas. Let $\left(U_{\alpha}, x_{\alpha}^{i}\right)$ and $\left(U_{\beta}, x_{\beta}^{i}\right)$ be two charts in \mathcal{A}^{\prime} where $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Then we have

$$
\begin{aligned}
\omega & =f d x_{\alpha}^{1} \wedge \cdots \wedge d x_{\alpha}^{n} \\
& =g d x_{\beta}^{1} \wedge \cdots \wedge d x_{\beta}^{n}
\end{aligned}
$$

where $f, g>0$ on $U_{\alpha} \cap U_{\beta}$. By the change of coordinates formula, we have

$$
0<g=\operatorname{det}\left(d \phi_{\alpha \beta}\right) f
$$

where $\phi_{\alpha \beta}:=x_{\beta} \circ x_{\alpha}^{-1}$ is the transition function of the two charts. Hence $\operatorname{det}\left(d \phi_{\alpha \beta}\right)>$ 0 for all α, β. Thus M is orientable.
(2) For an orientable manifold M, we have an orientated atlas $\mathcal{A}:=\left\{\left(U_{\alpha}, \phi_{\alpha}\right) \mid \alpha \in I\right\}$. Then for each local coordinate chart $\left(U_{\alpha}, \phi_{\alpha}\right) \in \mathcal{A}$, it determines a corresponding pointwise orientation $O_{p}^{\alpha}:=\left[\left(\left.\frac{\partial}{\partial \phi_{\alpha}^{\alpha}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial \phi_{\alpha}^{n}}\right|_{p}\right)\right]$ for $p \in U_{\alpha}$. Then considering two charts $\left(U_{\alpha}, \phi_{\alpha}\right)$ and (U_{β}, ϕ_{β}) where $U_{\alpha} \cap U_{\beta} \neq \emptyset$, by the change of coordinate formula, we have

$$
\left(\frac{\partial}{\partial \phi_{\beta}^{1}}, \ldots, \frac{\partial}{\partial \phi_{\beta}^{n}}\right)=J_{d \phi_{\alpha \beta}} \cdot\left(\frac{\partial}{\partial \phi_{\alpha}^{1}}, \ldots, \frac{\partial}{\partial \phi_{\alpha}^{n}}\right)
$$

where $\phi_{\alpha \beta}:=\phi_{\beta} \circ \phi_{\alpha}$ is the transition function and $J_{d \phi_{\alpha \beta}}$ denotes the Jacobian of the transition function.

Since \mathcal{A} is consistently orientable, we have $\operatorname{det}\left(J_{d \phi_{\alpha \beta}}\right)>0$. Thus $O_{p}^{\alpha}=O_{p}^{\beta}$ for $p \in U_{\alpha} \cap U_{\beta}$. Then we can define an orientation $O:=\left\{O_{p}\right\}_{p \in M}$ s.t. $O_{p}:=O_{p}^{\alpha}$ whence $p \in U_{\alpha}$. It is a well defined pointwise orientation on M. And it's continuos by the definition.

Conversely, suppose M has a continuos pointwise orientation. We can use the same method as in (1) to construct a new atlas \mathcal{A}^{\prime} from \mathcal{A}. If a chart $\left(U_{\alpha}, \phi_{\alpha}\right) \in \mathcal{A}$ is negatively oriented, i.e. $\left[\left(\left.\frac{\partial}{\partial \phi_{\alpha}^{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial \phi_{\alpha}^{n}}\right|_{p}\right)\right] \notin O_{p}$, then we change ϕ_{α}^{1} to $-\phi_{\alpha}^{1}$ to construct a new chart in \mathcal{A}^{\prime}. Thereafter, by the change of coordinate formula (2), we can conclude that $\operatorname{det}\left(J_{d \phi_{\alpha \beta}}\right)>0$ for all $\alpha, \beta \in I^{\prime}$. Thus \mathcal{A}^{\prime} is a consistently oriented atlas. So M is orientable.

Exercise 2. For a parallelizable manifold M, its tangent bundle $T M$ is trivial. From Exercise 1 of Sheet 5, we know that $T M$ has a global frame. We can just pick a smooth vector field $\left(X_{1}, \ldots, X_{n}\right)$ on M as a global frame for $T M$. Let's define the pointwise orientation $O_{p}=\left[\left(X_{1}(p), \ldots, X_{n}(p)\right)\right]$. Then we know pointwise $O:=\left\{O_{p}\right\}_{p \in M}$ is a continuos pointwise orientation by the definition. From Exercise 1, we can conclude that any parallelizable manifold is orientable.

For a torus $\mathbb{T}^{n}:=S^{1} \times \ldots S^{1}$, we know $T \mathbb{T}^{n} \cong T S^{1} \times \cdots \times T S^{1}$. Since $T S^{1}$ is trivial as we proved in Exercise 1 of Sheet 5 . We can conclude that $T \mathbb{T}^{n} \cong T S^{1} \times \cdots \times T S^{1} \cong \mathbb{T}^{n} \times \mathbb{R}^{n}$ is trivial as well. Thus \mathbb{T}^{n} is parallelizable, so it is also orientable.

Exercise 3. Assume that the real projective plane $\mathbb{P}^{2}:=\mathbb{R}^{3} \backslash\{0\} / \sim$, where $x \sim y$ iff $x=\lambda y$ for $\lambda \in \mathbb{R}$ as defined in Exercise 5 of Sheet 1 is orientable, then we can find a nowehre vanishing 2 -form $\omega \in \Omega^{2}\left(\mathbb{P}^{2}\right)$.

We use the standard atlas on \mathbb{P}^{2}, where $U_{i}:=\left\{[x] \in \mathbb{P}^{2} \mid x_{i} \neq 0\right\}$ and $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{2}$ for $i=1,2,3$. For $p:=\left[\left(x_{1}, x_{2}, x_{3}\right)\right] \in U_{1} \cap U_{3}$, we can express ω in term of the two charts as

$$
\omega=f d \phi_{1}^{1} \wedge d \phi_{1}^{2}=g d \phi_{3}^{1} \wedge d \phi_{3}^{2}
$$

where $f, g \in C^{\infty}\left(\mathbb{P}^{2}\right)$ and f, g will not change sign on U_{1} and U_{3} correspondingly. Since U_{3} is a connected domain, w.l.o.g, we can assume that $g>0$ on U_{3}. Then we apply the change of coordinate formula, we have

$$
0<g=\operatorname{det}\left(J_{d \phi_{1,3}}\right) f
$$

where $\phi_{1,3}=\phi_{3} \circ \phi_{1}^{-1}:\left(x_{2}, x_{3}\right) \rightarrow\left(\frac{1}{x_{3}}, \frac{x_{2}}{x_{3}}\right)$ is the transition function of the two charts. Notice that $\operatorname{det}\left(\left.J_{d \phi_{1,3}}\right|_{\left(x_{2}, x_{3}\right)}\right)=-\frac{1}{\left(x_{2}\right)^{3}}$, thus $\operatorname{det}\left(J_{d \phi_{1,3}}\right)$ will change sign on $\phi_{1}\left(U_{1} \cap U_{3}\right)$. Therefore, f will change sign on U_{3} which will contradict the assumption that f doesn't change sign on U_{1}. So \mathbb{P}^{2} is not orientable.

Exercise 4. Suppose that $\partial M \cap \operatorname{Int} M \neq \emptyset$, then we can find $p \in M$ and smooth charts $\phi: U \rightarrow \mathbb{H}^{n}$ and $\psi: U \rightarrow \mathbb{H}^{n}$ s.t.

$$
\left\{\begin{array}{l}
\phi(p) \in \partial \mathbb{H}^{n} \tag{1}\\
\psi(p) \in \operatorname{Int} \mathbb{H}^{n}
\end{array}\right.
$$

Then let's denote $V:=\phi(U)$ and $\tilde{V}:=\psi(U)$. We can suppose \tilde{V} is open in \mathbb{R}^{n}. Then $\phi \circ \psi^{-1}: \tilde{V} \rightarrow V$ is a smooth map in the standard sense and $J_{\left(\phi \circ \psi^{-1}\right)}(\psi(p))$ is regular. In particular

$$
\frac{\partial\left(\phi^{n} \circ \psi^{-1}\right)}{\partial\left(x^{1}, \ldots, x^{n}\right)}(\psi(p)) \neq(0, \ldots, 0)
$$

Therefore, any neighborhood of $\psi(p)$ in \tilde{V} has a point such that $\phi^{n} \circ \psi^{-1}$ (the $n^{\text {th }}$ coordinate) is negative which is not possible, since ϕ maps into \mathbb{H}^{n} (i.e. $\phi^{n}(x) \geq 0$ for all $x \in U)$.

