Exercise 1.

(1) Let \mathcal{A} by any smooth atlas on M, wlog we assume the charts in \mathcal{A} all have connected domains. For each chart (U, x^i) in \mathcal{A} , a nowhere vanishing n-form $\omega \in \Omega^n(M)$ can be expressed as

$$\omega = f \, dx^1 \wedge \dots, \wedge dx^n \quad \text{in } U$$

Since $f \in C^{\infty}(U)$ and U is connected, we know f can't change sign in U. For each coordinates chart, if f < 0 in U, we replace x^1 by $-x^1$ and denote the new atlas \mathcal{A}' . We show that \mathcal{A}' is consistently oriented atlas. Let $(U_{\alpha}, x_{\alpha}^i)$ and (U_{β}, x_{β}^i) be two charts in \mathcal{A}' where $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Then we have

$$\omega = f \ dx_{\alpha}^{1} \wedge \dots \wedge dx_{\alpha}^{n}$$
$$= g \ dx_{\beta}^{1} \wedge \dots \wedge dx_{\beta}^{n}$$

where f, g > 0 on $U_{\alpha} \cap U_{\beta}$. By the change of coordinates formula, we have

$$0 < g = \det(d\phi_{\alpha\beta}) f$$

where $\phi_{\alpha\beta} := x_{\beta} \circ x_{\alpha}^{-1}$ is the transition function of the two charts. Hence $\det(d\phi_{\alpha\beta}) > 0$ for all α, β . Thus M is orientable.

(2) For an orientable manifold M, we have an orientated atlas $\mathcal{A} := \{(U_{\alpha}, \phi_{\alpha}) | \alpha \in I\}$. Then for each local coordinate chart $(U_{\alpha}, \phi_{\alpha}) \in \mathcal{A}$, it determines a corresponding pointwise orientation $O_p^{\alpha} := \left[\left(\frac{\partial}{\partial \phi_{\alpha}^{1}} \Big|_{p}, \dots, \frac{\partial}{\partial \phi_{\alpha}^{n}} \Big|_{p} \right) \right]$ for $p \in U_{\alpha}$. Then considering two charts $(U_{\alpha}, \phi_{\alpha})$ and $(U_{\beta}, \phi_{\beta})$ where $U_{\alpha} \cap U_{\beta} \neq \emptyset$, by the change of coordinate formula, we have

$$\left(\frac{\partial}{\partial \phi_{\beta}^{1}}, \dots, \frac{\partial}{\partial \phi_{\beta}^{n}}\right) = J_{d\phi_{\alpha\beta}} \cdot \left(\frac{\partial}{\partial \phi_{\alpha}^{1}}, \dots, \frac{\partial}{\partial \phi_{\alpha}^{n}}\right)$$

where $\phi_{\alpha\beta} := \phi_{\beta} \circ \phi_{\alpha}$ is the transition function and $J_{d\phi_{\alpha\beta}}$ denotes the Jacobian of the transition function.

Since \mathcal{A} is consistently orientable, we have $\det(J_{d\phi_{\alpha\beta}}) > 0$. Thus $O_p^{\alpha} = O_p^{\beta}$ for $p \in U_{\alpha} \cap U_{\beta}$. Then we can define an orientation $O := \{O_p\}_{p \in M}$ s.t. $O_p := O_p^{\alpha}$ whence $p \in U_{\alpha}$. It is a well defined pointwise orientation on M. And it's continuous by the definition.

Conversely, suppose M has a continuos pointwise orientation. We can use the same method as in (1) to construct a new atlas \mathcal{A}' from \mathcal{A} . If a chart $(U_{\alpha}, \phi_{\alpha}) \in \mathcal{A}$ is negatively oriented, i.e. $\left[\left(\frac{\partial}{\partial \phi_{\alpha}^{1}}\Big|_{p}, \ldots, \frac{\partial}{\partial \phi_{\alpha}^{n}}\Big|_{p}\right)\right] \notin O_{p}$, then we change ϕ_{α}^{1} to $-\phi_{\alpha}^{1}$ to construct a new chart in \mathcal{A}' . Thereafter, by the change of coordinate formula (2), we can conclude that $\det(J_{d\phi_{\alpha\beta}}) > 0$ for all $\alpha, \beta \in I'$. Thus \mathcal{A}' is a consistently oriented atlas. So M is orientable.

Exercise 2. For a parallelizable manifold M, its tangent bundle TM is trivial. From Exercise 1 of Sheet 5, we know that TM has a global frame. We can just pick a smooth vector field (X_1, \ldots, X_n) on M as a global frame for TM. Let's define the pointwise orientation $O_p = [(X_1(p), \ldots, X_n(p))]$. Then we know pointwise $O := \{O_p\}_{p \in M}$ is a continuos pointwise orientation by the definition. From Exercise 1, we can conclude that any parallelizable manifold is orientable.

For a torus $\mathbb{T}^n := S^1 \times \ldots S^1$, we know $T\mathbb{T}^n \cong TS^1 \times \cdots \times TS^1$. Since TS^1 is trivial as we proved in Exercise 1 of Sheet 5. We can conclude that $T\mathbb{T}^n \cong TS^1 \times \cdots \times TS^1 \cong \mathbb{T}^n \times \mathbb{R}^n$ is trivial as well. Thus \mathbb{T}^n is parallelizable, so it is also orientable.

Exercise 3. Assume that the real projective plane $\mathbb{P}^2 := \mathbb{R}^3 \setminus \{0\} / \sim$, where $x \sim y$ iff $x = \lambda y$ for $\lambda \in \mathbb{R}$ as defined in Exercise 5 of Sheet 1 is orientable, then we can find a nowehre vanishing 2-form $\omega \in \Omega^2(\mathbb{P}^2)$.

We use the standard atlas on \mathbb{P}^2 , where $U_i := \{ [x] \in \mathbb{P}^2 | x_i \neq 0 \}$ and $\phi_i : U_i \to \mathbb{R}^2$ for i = 1, 2, 3. For $p := [(x_1, x_2, x_3)] \in U_1 \cap U_3$, we can express ω in term of the two charts as

$$\omega = f d\phi_1^1 \wedge d\phi_1^2 = g d\phi_3^1 \wedge d\phi_3^2$$

where $f, g \in C^{\infty}(\mathbb{P}^2)$ and f, g will not change sign on U_1 and U_3 correspondingly. Since U_3 is a connected domain, w.l.o.g, we can assume that g > 0 on U_3 . Then we apply the change of coordinate formula, we have

$$0 < g = \det(J_{d\phi_{1,3}}) f$$

where $\phi_{1,3} = \phi_3 \circ \phi_1^{-1} : (x_2, x_3) \to \left(\frac{1}{x_3}, \frac{x_2}{x_3}\right)$ is the transition function of the two charts. Notice that $\det(J_{d\phi_{1,3}}|_{(x_2,x_3)}) = -\frac{1}{(x_2)^3}$, thus $\det(J_{d\phi_{1,3}})$ will change sign on $\phi_1(U_1 \cap U_3)$. Therefore, f will change sign on U_3 which will contradict the assumption that f doesn't change sign on U_1 . So \mathbb{P}^2 is not orientable.

Exercise 4. Suppose that $\partial M \cap \operatorname{Int} M \neq \emptyset$, then we can find $p \in M$ and smooth charts $\phi: U \to \mathbb{H}^n$ and $\psi: U \to \mathbb{H}^n$ s.t.

(1)
$$\begin{cases} \phi(p) \in \partial \mathbb{H}^n \\ \psi(p) \in \mathrm{Int} \mathbb{H}^n \end{cases}$$

Then let's denote $V := \phi(U)$ and $\tilde{V} := \psi(U)$. We can suppose \tilde{V} is open in \mathbb{R}^n . Then $\phi \circ \psi^{-1} : \tilde{V} \to V$ is a smooth map in the standard sense and $J_{(\phi \circ \psi^{-1})}(\psi(p))$ is regular. In particular

$$\frac{\partial(\phi^n \circ \psi^{-1})}{\partial(x^1, \dots, x^n)} \ (\psi(p)) \neq (0, \dots, 0)$$

Therefore, any neighborhood of $\psi(p)$ in \tilde{V} has a point such that $\phi^n \circ \psi^{-1}$ (the n^{th} coordinate) is negative which is not possible, since ϕ maps into \mathbb{H}^n (i.e. $\phi^n(x) \ge 0$ for all $x \in U$).