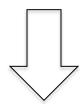
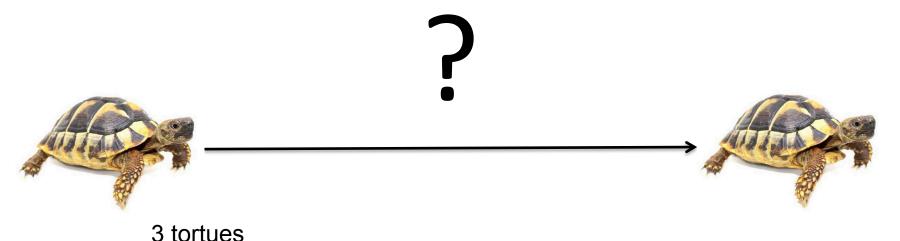
EE-206

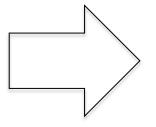

Systèmes de mesure

EE-206 Systèmes de mesure

Semaine	Date	Cours	Prof.	Date	Groupe	TP	Salle	Prof.
1	22 févr. 21	Instruments de mesure	SR & JMF	25 févr. 21	A	TP mesure 1 - Multimètre	ELD 040	SR
2	1 mars 21	Théorie de la mesure	SR	4 mars 21	С	TP mesure 1 - Multimètre	ELD 040	SR
3	8 mars 21	Système d'acquisition	SR	11 mars 21	В	TP mesure 1 - Multimètre	ELD 040	SR
4	15 mars 21	LabVIEW		18 mars 21	A	TP mesure 2 - Oscillsocope	ELD 040	SR
5	22 mars 21	Analyse des résultats	JMF	25 mars 21	С	TP mesure 2 - Oscillsocope	ELD 040	SR
6	29 mars 21	Analyse d'erreur	JMF	1 avr. 21	В	TP mesure 2 - Oscillsocope	ELD 040	SR
	5 avr. 21	Vacances de Pâques		8 avr. 21		Vacances de Pâques		
7	12 avr. 21	Exercice Calcul d'erreur	JMF	15 avr. 21	A/B/C	Contrôle continu	Virtuel	SR & JM
8	19 avr. 21	Planification d'expériences	JMF	22 avr. 21	В	TP mesure 3 - Wattmètre	ELD 040	SR
9	26 avr. 21	Planification d'expériences	JMF	29 avr. 21	A	TP mesure 3 - Wattmètre	ELD 040	SR
10	3 mai 21	Planification d'expériences	JMF	6 mai 21	С	TP mesure 3 - Wattmètre	ELD 040	SR
11	10 mai 21	Capteurs	EB	13 mai 21		Férié		
12	17 mai 21	Capteurs	EB	20 mai 21	A	TP Arduino	ELD 040	SR & EB
13	24 mai 21	Férié		27 mai 21	С	TP Arduino	ELD 040	SR & EB
14	31 mai 21	Contrôle continu	SR & JMF	3 juin 21	В	TP Arduino	ELD 040	SR & EB

C'est quoi une mesure ?


L'idée est de représenter un phénomène physique par un moyen reproductible et comparable.


On utilise:

- Des chiffres (nombres)
- unités

C'est quoi une mesure?

5 foot
1.5 mètres
1500 millimètres
20 secondes
1 petit sablier

Système international d'unités (SI)

S.Robert

22 février 2021

C'est quoi une mesure?

Système international d'unités (SI)

- Inspiré du système métrique
- Système décimal (sauf temps et angles)
- Norme internationale ISO 80000-1:2009
- Pas officiel partout dans le monde (USA)

A qui s'adresse la mesure ?

Selon l'utilisateur, la mesure ne va peut-être pas utiliser la même unité.

Exemple : Distance de sécurité entre voitures.

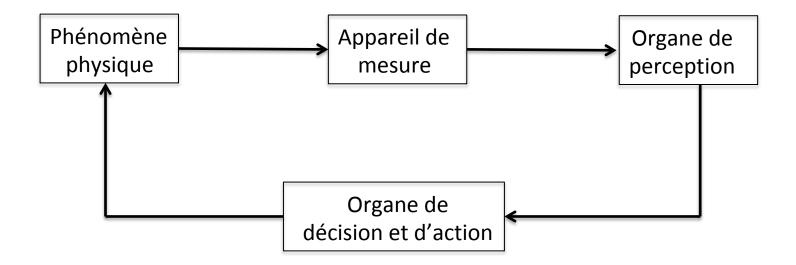
Si vous êtes conducteur, règle des 2 secondes.

Si vous êtes policier, la distance en mètre.

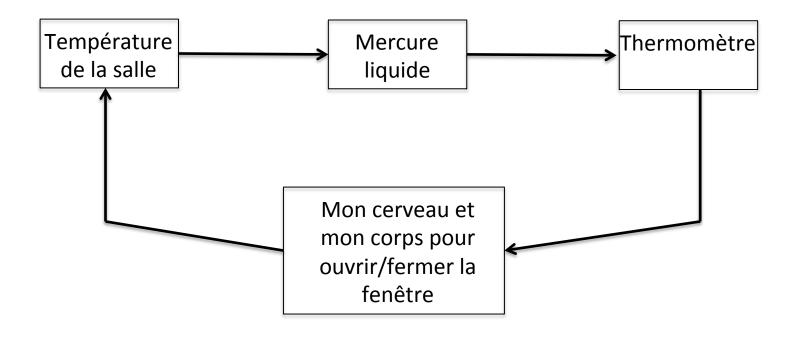
S.Robert 2021

A qui s'adresse la mesure ?

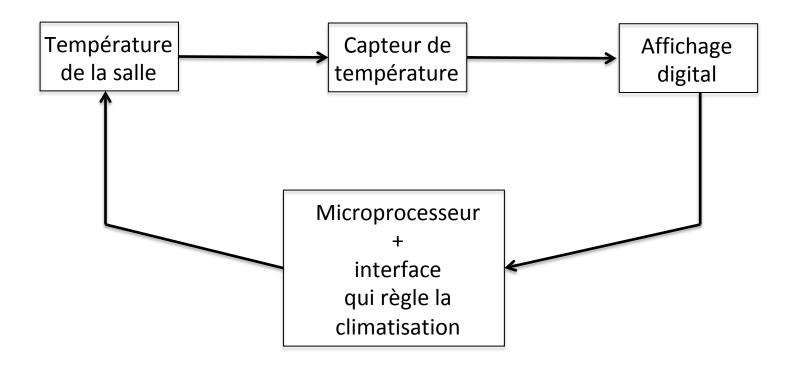
Quel appareil va-t-on utiliser pour chaque utilisateur?


Automobiliste:

radar de distance dans le pare-choc et une lumière verte/rouge dans le cockpit de la voiture


Policier:

radar avec affichage de la distance et impression d'un ticket comme preuve pour la contravention


Principe de la mesure

Principe de la mesure

Principe de la mesure


Intelligibilité de la mesure

Cas typique : une ampoule au plafond casse et vous voulez changer le lampadaire.

Problème: vous avez appuyé x fois sur le bouton et vous ne savez pas si la

lampe est alimentée ou pas

Solution: que fait-on?

Est-ce un appareil de mesure ?

A partir de quelle tension la lumière apparaît ?

Est-ce qu'on peut savoir s'il y a 100V, 230V ou 400V?

Intelligibilité de la mesure

Autre cas: un vieil appareil 220V +/- 10% à tester pour voir s'il fonctionne toujours

Problème : la tension du réseau actuellement dépasse souvent 240V

Solution: que fait-on?

Seuil de sensation minimum -> 2 états voisins indétectables

Seuil de saturation -> 2 états voisins plus distingués

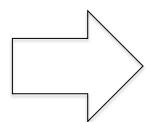
Sensation varie par quanta -> finesse de la mesure

Echelle linéaire ou logarithmique ou autre

Intelligibilité de la perception

Comment indiquer à l'utilisateur la valeur mesurée ?

L'humain a 5 sens : Adapté ou pas ?


- Vision Oui sauf pour les couleurs

- Ouïe Oui mais moins précis que la vue

Odorat
 Oui mais très rare et difficile de différencier 2 états voisins

Oui mais très rare et difficile de différencier 2 états voisins

Oui mais très rare et difficile de différencier 2 états voisins

Goût

Toucher

Principalement la vision (et l'ouïe)

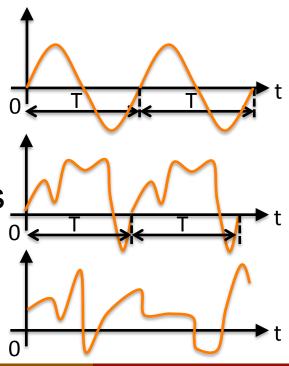
Que mesure-t-on en électricité

- Tension [V]
- Courant [A]
- Puissance [W]
- Facteur de puissance [1]
- Fréquence [Hz]
- Résistance [Ω]
- Vitesse [t/min] [rad/s]
- Couple [Nm]

- Inductance [H]
- Capacité [F]
- Température [°] [K]
- Charge électrique [C]

• ...

Quels types de signaux mesure-t-on?


Signaux continus

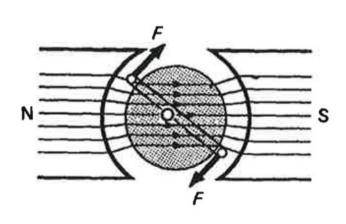
- Signaux alternatifs
 - Sinusoïdaux

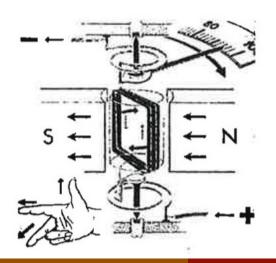
- Quelconques mais périodiques

Comment mesurer des signaux continus ?

Signaux continus

1) Avant l'ère de l'électronique

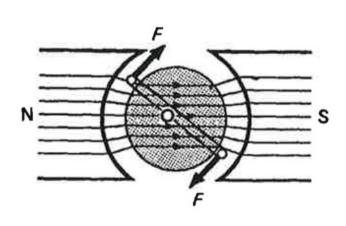

2) Avec l'aide de l'électronique

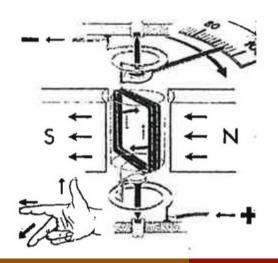

22 février 2021 1

Le galvanomètre

 Le courant circulant dans une bobine placée à l'intérieur d'un champ magnétique fait dévier l'aiguille grâce à la force de Laplace

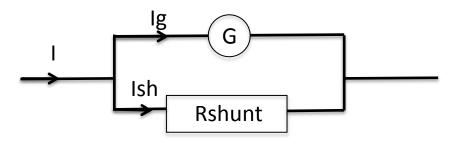
$$\vec{F} = n \cdot i \cdot (\vec{lb} \times \vec{B})$$





22 février 2021 17

Le galvanomètre

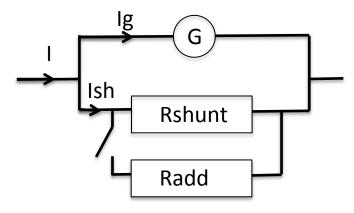

- -> réalisation d'un ampèremetre mais :
 - 1 seule gamme de courants
- -> comment faire une ampèremètre pour différentes gammes de courants ?

L'ampère-mètre (analogique)

- On ajoute une résistance en parallèle appelée « shunt »
- Ou plusieurs avec des interrupteurs pour avoir plusieurs gammes de mesure

I = Ig + Ish

Rg•lg = Rshunt•Ishunt

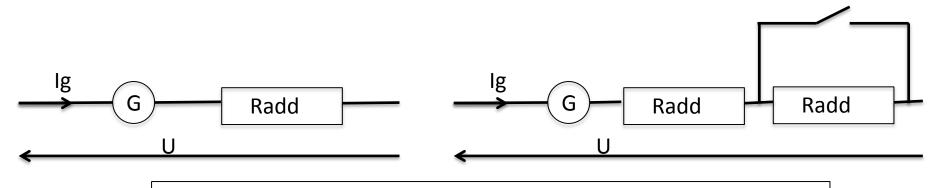

 $Rg \bullet Ig = Rshunt \bullet (I-Ig)$

Rg•lg = Rshunt•l-Rshunt•lg

(Rg+Rshunt)•Ig = Rshunt•I

Ig = Rshunt/(Rg+Rshunt)•I

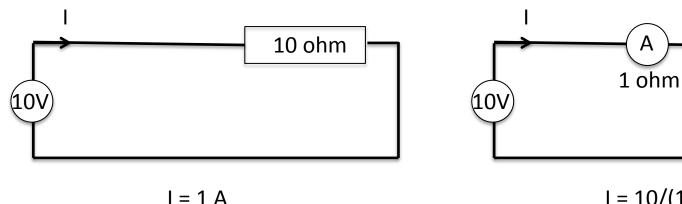
-> Ig est proportionnel à I


Rtot = Rg•Rshunt/(Rg+Rshunt)

-> Rtot dépend de Rshunt

- Rshunt doit être petit
- Rshunt varie en fonction de la gamme

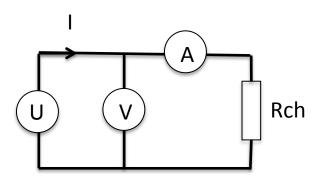
Le volt-mètre (analogique)


- On ajoute une résistance en série
- ou plusieurs avec des interrupteurs pour avoir plusieurs gammes de mesure

- R doit être grand
- R varie en fonction de la gamme

Puissance utilisée par la mesure

- On vient de voir qu'on utilisait des résistances pour réaliser des voltmètres et des ampèremètre
- MAIS une résistance consomme de l'énergie
- DONC on influence le résultat de la mesure

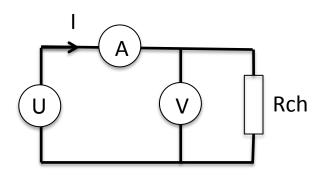


I = 10/(10+1) = 0.91A

10 ohm

Influence sur la mesure

Montage amont

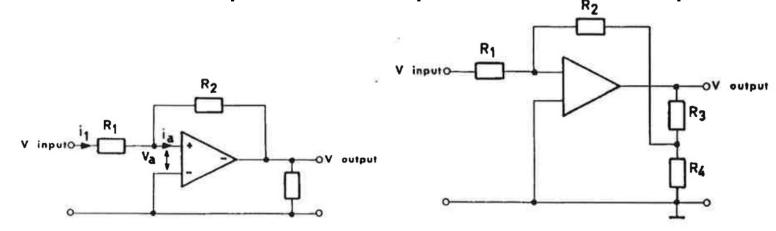


$$U = Uv = Ua + Uch$$

$$U = (Ra + Rch) \cdot Ich$$

- -> Ra << Rch
- -> bon ampèremètre

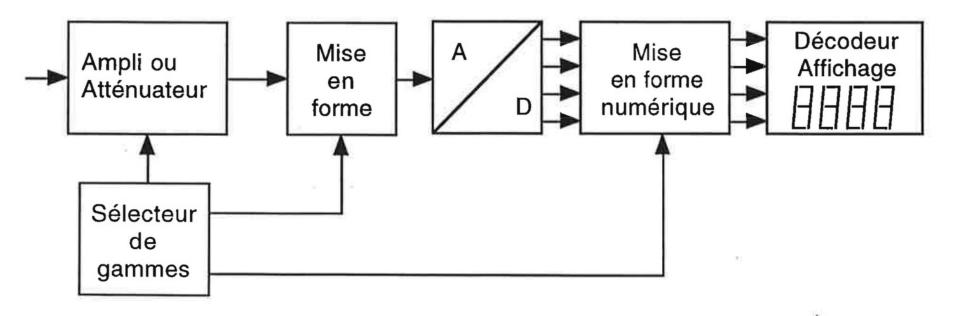
Montage aval



$$I = Iv + Ich$$

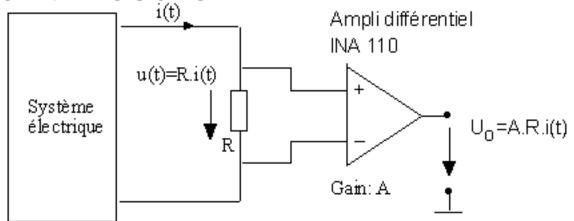
-> bon voltmètre

Le volt-mètre (électronique)


- On utilise un ampli-OP pour mesurer une tension qui est ensuite appliquée à un cadran
- Donc électronique ne veut pas dire numérique!

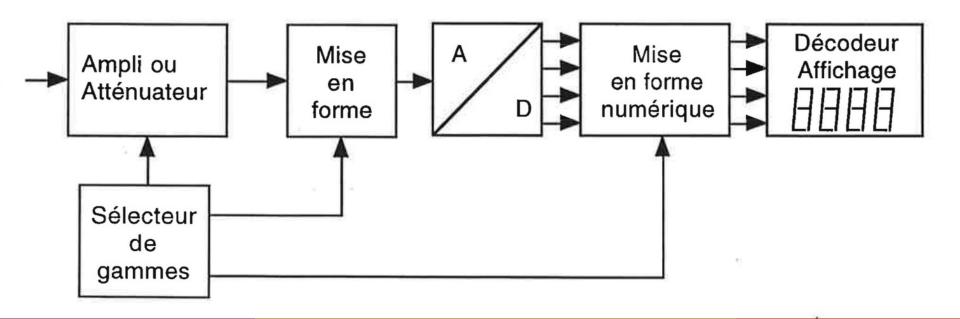
- Impédance d'entrée élevée
- Alimentation séparée obligatoire

Le volt-mètre (numérique)


 À partir d'un voltmètre électronique on digitalise le signal pour l'afficher sur un écran à digits ou LCD ou tactile

22 février 2021 2

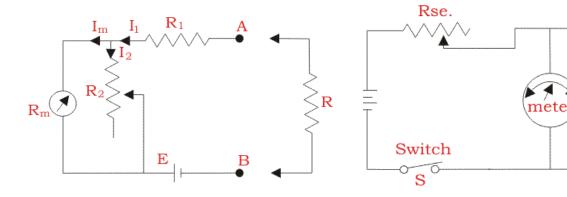
L'ampère-mètre (électronique)


 On utilise un montage à ampli-op dont l'une des résistances est parcourue par le courant mesuré

- Impédance d'entrée faible
- Alimentation séparée obligatoire

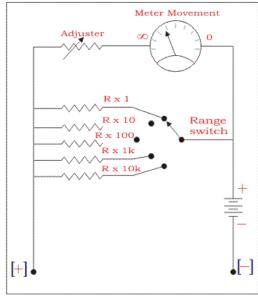
L'ampère-mètre (numérique)

 Un ampère-mètre électronique avec un affichage digital



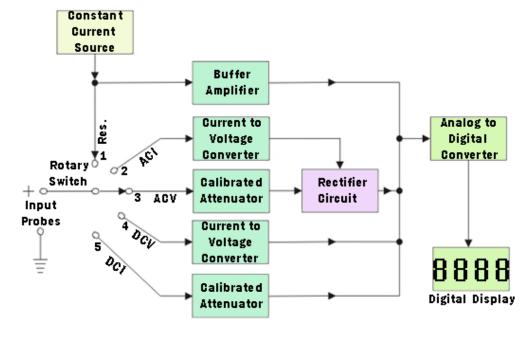
22 février 2021 2

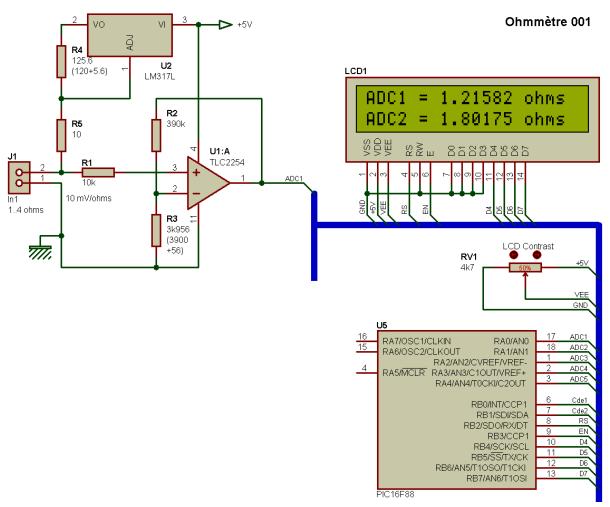
Le ohm-mètre (analogique)


 On applique une tension à un circuit qui comprend la résistance à mesurer et on mesure le courant qui la traverse avec un

galvanomètre

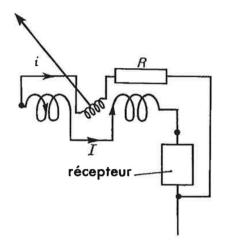
Basic series type ohmmeter

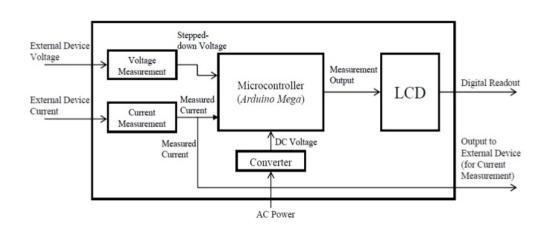

Shunt type ohmmeter

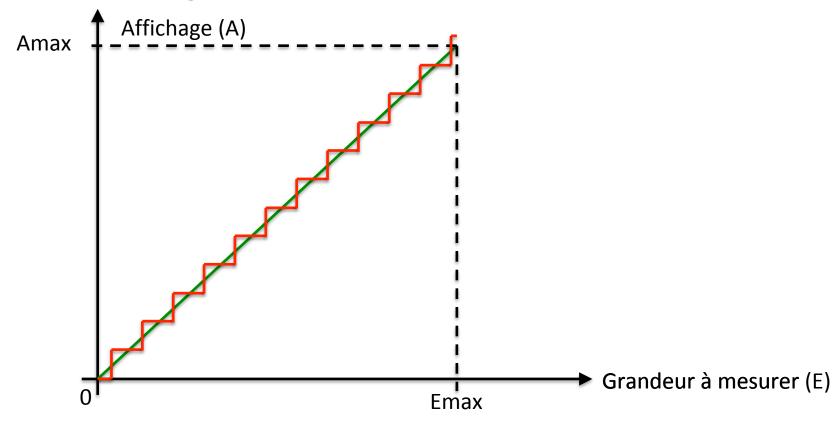

Multirange ohmmeter

Le ohm-mètre (électronique)

 On injecte du courant (source de courant) et on mesure la tension donc on peut en déduire la résistance




Le ohm-mètre (électronique)


Le watt-mètre

- La combinaison d'un volt-mètre et d'un ampère-mètre.
- Analogique : système électrodynamique
- Numérique : électronique

Différence entre appareils analogiques et numériques ?

Différence entre appareils analogiques et numériques ?

Classes d'appareils

- Elle indique en % de la déviation maximale, l'erreur que peut atteindre n'importe quelle lecture.
- Classe 0.1 et 0.2 : appareils étalons
- Classe 0.5 et 1.0 : appareils de précisions
- Classe 1.5 et 2.5 : appareils industriels
- Classe 5 : appareils indicateurs