SCHOOL OF ENGINEERING MECHANICAL ENGINEERING

LRESE - Laboratory of Renewable Energy Sciences and Engineering

Renewable Energy: exercise 1, solution

1. CO_2 emissions

- (a) Source: Key World Energy Statistics 2019.pdf
 In 2018: 4'482 Mt oil (p. 10), 3'937 Gm³ natural gas (p. 12), 7'831 Mt coal (p. 14)
- (b) The chemical composition of oil is given by its empirical formula: C₇H₁₄N_{0.1}O_{0.1}S_{0.3}. Thus, burning 1 mol of oil (M_{oil}=110 g/mol) emits 7 mole of CO₂ (M_{CO₂} = 44 g/mol). The weight ratio CO₂-to-oil is (7 · 44)/110 = 2.8 or in other words, burning 4'482 Mt oil will emit 2.8 times the amount in CO₂: **12.55 Gt CO₂**Per 1 mol of CH₄ 1 mol of CO₂ is emitted, therefore the molar mass ratio 44/16 = 2.75 multiplied by the amount of gas burnt 3'937 Gm³ · 0.7 kg/m³ = 2'756 Mt gives the mass of CO₂ emitted from burning 1 mol of C and a carbon content of approx. 50 wt-% in coal (7'831 Mt coal · 0.5 = 3'916 Mt C), the molar mass ratio of 44/12 = 3.67 again determines the mass of emitted CO₂ when multiplied with the mass of burnt carbon: **14.37 Gt CO**₂
 Total annual emissions from fossil fuels is 12.55 + 7.58 + 14.37 = 34.5 Gt CO₂ (36.4% from coal, 22% from oil, 41.6% from gas) 34.5 Gt CO₂ / 7.55 billion people = **4.57 t CO₂** / **person**
- (c) Statistics of CO_2 emission per capita compared to CO_2 emissions for different countries can be found starting from page 48 of Keyword World Energy Statistics. These statistics are shown in Figure 1 for different countries.
- (d) 13'972 Mtoe total primary energy consumption = 585 EJ/yr = 18.5 TW \Rightarrow 2.5 kW per person on the planet on average CO₂ intensity of energy: 34.5 Gt CO₂ / 13'972 Mtoe \Rightarrow 2.5 t CO₂/toe
- (e) CO_2 emission intensity of countries i) to viii) compare to each other and to the average value of d) in Figure 2.

SCHOOL OF ENGINEERING MECHANICAL ENGINEERING

LRESE - Laboratory of Renewable Energy Sciences and Engineering

Figure 1: CO_2 emission per capita and CO_2 emissions for different countries

Figure 2: CO_2 emission intensity of countries i) to viii)

- 2. Replacement Biomass
 - (a) 7'831 Mt coal \cdot 20 MJ/kg = 156.6 EJ. We need 2 \cdot 156.6 EJ energy equivalent in wood to replace coal for the electricity production (factor 2 to account for only half the electrical conversion efficiency, 20% instead of 40%) = 313 EJ = 18.4 Tt of wood. If we can grow 2 kg per m² sustainably, the total amount of $18.4 \cdot 10^{12}$ kg grows in $9.07 \cdot 10^{12}$ m² = $9.07 \cdot 10^8$ ha forest to replace coal.

For replacement of oil: We need 4'482 Mtoe = 187 EJ, 187 EJ / (21 MJ/L) which is $8.91 \cdot 10^{12}$ L. This requires 1 ha / 3'000 L $\cdot 8.91 \cdot 10^{12}$ L = $2.91 \cdot 10^{9}$ ha crop land to replace oil. We would almost need to double the now used agricultural land only to replace oil by ethanol.

We need 3'937 Gm³ of natural gas per year. By agro-waste digestion we would need 3'937 Gm³/2000 (m³/ha) = $1.96 \cdot 10^9$ ha of land to replace gas.

- (b) The forest surface is $5.61 \cdot 10^7 \text{ km}^2$ and the agricultural area $1.53 \cdot 10^7 \text{ km}^2$. 16.2% of earth's forest area would be needed to replace coal by wood for electricity. 190% of the available agricultural area would be needed to replace oil by bioethanol, and 128% to cover the need of gas by biogas.
- (c) The total biomass energy needed is given by 7'476 Mtoe for wood (23% of yearly biomass production in forest); 4'482 Mtoe for bioethanol and 3'385 Mtoe for biogas (3'937 Gm³ converted to Mtoe using the heating value), a total of 7'867 Mtoe for bioethanol and biogas (about double of the yearly biomass production in agriculture). All together is 15'343 Mtoe, which corresponds to 48% of the forest biomass.
- (d) If the increase is entirely covered by forest, it represents 24% of the forest to harvest. If the increase is entirely covered by agriculture area, it represents 219% of the agriculture area to harvest.

SCHOOL OF ENGINEERING MECHANICAL ENGINEERING

LRESE - Laboratory of Renewable Energy Sciences and Engineering

- 3. Replacement Solar
 - (a) The solar irradiance per year is given by 6 kWh/m² · 365 = 2'190 kWh/m² = 7.88 · 10^{-9} EJ/m². To replace coal-produced electricity, we need 0.4/0.18 · 154.18 EJ energy equivalent in solar = 342.6 EJ. The area to produce this energy by solar is 154.18 EJ / 7.88 · 10^{-9} EJ/m² = 43'458 km². The area to replace oil by solar fuels is 4'331 Mtoe = 181 EJ / (7.88 · 10^{-9} EJ/m² · 0.18 · 0.75) = 170'369 km². The area to replace gas by solar heat is 129 EJ (3'590 Gm³ converted to EJ using the heating value) / (7.88 · 10^{-9} EJ/m² · 0.65) = 25'220 km². Total area of 239'046 km² is required.
 - (b) The area of land and ocean on Earth are respectively $1.48 \cdot 10^8 \text{ km}^2$ and $3.62 \cdot 10^8 \text{ km}^2$. The total PV/absorber area needed to replace all fossil fuels by solar energy represents only 0.16% of land or 0.07% of water area. In other words, this PV/absorber area represents around 5.8 times the area of Switzerland.
 - (c) Solar irradiance data of Almeria, Spain can be found here: http://geomodelsolar.eu/data/typical-meteorological-year Integrating the solar irradiation from excel file gives yearly global horizontal solar irradiation of 1'863 kWh/m² = $6.71 \cdot 10^{-9}$ EJ/m². The area to replace coal-produced electricity is 51'079 km². Similarly, the area to replace oil by solar fuels is 200'244 km² and gas by solar heat 29'642 km². A total PV/absorber area of 280'965 km² is required (6.8 times Switzerland).