
VHDL Testbench Tutorial

Learning Goal: Learning how to write a testbench in VHDL.

Requirements: ModelSim.

Created by: Sahand Kashani-Akhavan.

1 Introduction

An engineer’s job does not stop after having created a “solution” to a specific problem, but he/she
must also be able to demonstrate, to various degrees of certitude, that the solution is correct. This
statement is equally valid in both software & hardware engineering, but it is especially important in
the hardware domain, as errors can generally not be fixed once a product has been shipped to customers!

When describing digital circuits in VHDL, one generally tests the correctness of their implementation
with a VHDL testbench. A testbench is generally a non-synthesizable VHDL file which iteratively applies
a sequence of controlled inputs to a circuit and compares its concrete output against the expected
output. If a mismatch is detected, an error is displayed in the VHDL simulator’s log which can then be
consulted to help direct a designer search for the problem in the circuit’s RTL description.

This tutorial introduces readers to the craft of writing simple VHDL testbenches. We start with an
empty VHDL testbench file and iteratively explain our thought process and how it affects the way we
construct the testbench. We start with a simple testbench for a combinatorial circuit, then move on
towards a more complicated testbench for a sequential circuit.

For simplicity, we will introduce black box testing. This method tests a circuit by considering it is
concealed in a black box, with only its interface visible to the person testing the system. It allows one to
abstract away the implementation details of the circuit and only test its behaviour at its interface. By
recursively performing black box testing on all subcircuits used in larger designs, we can, with high
confidence, compose systems which are correct by construction.

Note that we will not be performing exhaustive testing, which means we will not test our circuits against
all possible input combinations, but rather against a carefully-chosen set of test vectors. The number of
input combinations grows exponentially with the size of a circuit’s inputs, so it quickly becomes infeas-
ible to try all combinations (unless you are willing to wait several hours for the result of a simulation).

Version 1.2 of 10th March 2017, EPFL ©2017 1 of 29

VHDL Testbench Tutorial

2 Testbench architecture

There are multiple ways of developing a testbench, but the one we will develop throughout this tutorial
is shown in Figure 1. It consists of three 3 parts:

1. The component we want to test, i.e. the Design Under Test (DUT).

2. A mechanism for supplying inputs to the DUT.

3. A mechanism for checking the outputs of the DUT against expected outputs.

Design
Under
Test
(DUT)

Supply
inputs

Check
outputs

TESTBENCH

Figure 1: Testbench architecture

3 Victims / test subjects

We will be testing two RTL designs of a generic N-bit adder:

1. Combinatorial ripple-carry adder (Figure 2a.)

2. Sequential adder (Figure 2b.)

Each design is based upon the implementation of a 1-bit combinatorial full-adder. We assume the 1-bit
full-adder is correct, so we will not be explicitly testing it.

OP1

adder
combi

OP2 SUM

N

N N+1

(a) Combinatorial adder

OP1

adder
seq

OP2 SUM

N

N N+1

START

RST

CLK

DONE

(b) Sequential adder

Figure 2: Adders

2 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

4 Setup

4.1 Project structure

Download the provided template and extract it somewhere where the directory path does not contain
any spaces. You should obtain the directory tree shown below:

vhdl testbench tutorial/
modelsim/
testbench/

tb adder combinatorial.vhd
tb adder sequential.vhd

vhdl/
adder combinatorial.vhd
adder sequential.vhd
full adder.vhd

1. The modelsim folder will be used by ModelSim for its working directory.

2. The testbench folder contains 100% empty files in which we will write our testbenches for the
combinatorial and sequential adders.

3. The vhdl folder contains the RTL designs of our 2 adders and of the 1-bit full-adder on which they
are based.

4.2 ModelSim setup

1. Launch ModelSim and create a new project with File > New > Project...

2. Name the project vhdl_testbench_tutorial and choose the modelsim folder from the extrac-
ted archive for the Project Location (Figure 3a)

3. Click on the Add Existing File button and add all files in the vhdl and testbench directories
to the project (Figure 3b). You should obtain something similar to Figure 4.

(a) Create project (b) Add items files to the project

Figure 3: ModelSim project creation

Version 1.2 of 10th March 2017, EPFL ©2017 3 of 29

VHDL Testbench Tutorial

Figure 4: Files added to project

4. Click on the icon to compile all sources. The RTL files will compile successfully, but the test-
benches will fail to compile (Figure 5). This is normal as the testbench files are empty, so ModelSim
does not detect any entity to compile. If your output is not as in Figure 5, then it means you have
added the various VHDL files in a different order from that shown in Figure 4 (“Order” column).
You can solve this issue by clicking a few more times on the icon until ModelSim correctly
determines the right compile order of the VHDL files based on their dependencies.

Figure 5: Compiling all files (empty testbenches)

The ModelSim project is now set up, so we can get to writing the testbenches.

4 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

5 Testing the combinatorial adder

We will now write, from scratch, the testbench for the combinatorial adder. All code presented in this
section is to be written in testbench/tb_adder_combinatorial.vhd.

5.1 Minimum testbench

ModelSim complains about the fact the testbench is empty, so let’s begin by filling it up with the
minimum code needed to compile.

All VHDL files must have an entity, so we must write one for this testbench. An entity represents
the input and output ports of a component. This makes sense if the VHDL file is describing some
RTL design, but it doesn’t make much sense in the case of a testbench. Indeed, a testbench is not a
“component” which will be used in a design, but merely a simple VHDL file which is used to provide
inputs to, and monitor the outputs from the DUT (the combinatorial adder in this case). So the testbench
essentially has an empty entity.

entity tb_adder_combinatorial is
end tb_adder_combinatorial;

Listing 1: Minimum testbench (only empty entity)

ModelSim should now successfully compile this testbench.

We would like to actually do something useful with the testbench, so we need to add an architec-
ture, as well as include the libraries containing various data types we are interested in manipulating
(std_logic, std_logic_vector, integer, . . .).

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_combinatorial is
end tb_adder_combinatorial;

architecture test of tb_adder_combinatorial is
begin
end architecture test;

Listing 2: Add libraries & empty architecture

5.2 Instantiating the DUT

In order to test a component, we must have access to it. So the next step is to take the DUT, instantiate
it, and wire it into the testbench. After this step, we would be able to interact with the DUT as if it were
a component in the “design” (although we are not designing anything here, just testing).

Wiring the DUT into the testbench requires information about its entity. The combinatorial adder’s
entity is presented in Listing 3.

entity adder_combinatorial is
generic(

N_BITS : positive range 2 to positive'right -- Operand size in bits
);
port(

Version 1.2 of 10th March 2017, EPFL ©2017 5 of 29

VHDL Testbench Tutorial

OP1 : in std_logic_vector(N_BITS - 1 downto 0); -- N-bit input.
OP2 : in std_logic_vector(N_BITS - 1 downto 0); -- N-bit input.
SUM : out std_logic_vector(N_BITS downto 0) -- (N+1)-bit output.

);
end entity adder_combinatorial;

Listing 3: adder combinatorial entity

Note that the DUT is generic: at instantiation time, the component can be configured with a specific
width depending on the value provided in its N_BITS parameter. Let’s analyze this generic parameter,
namely the line N_BITS : positive range 2 to positive’right.

• N_BITS is declared as being of type positive. In VHDL, positive is a constrained 32-bit
integer type ranging from 1 to 2147483647. However, the DUT is a multi-bit adder, so the author
of the design provided a more constrained range than that of the standard positive type, namely
a range with a lower bound of 2 instead of 1.

• When constraining a type in VHDL, you must provide both a lower and an upper bound (the
language does not allow you to just constrain one “side”). The right attribute of positive
is used for this purpose here. When you write positive’right, you are telling the VHDL
compiler to take the “rightmost” value of the positive type as the upper bound of N_BITS.

Now that we know what the DUT’s entity looks like, we extract its details and update the testbench
architecture as follows:

1. Create a constant for every generic parameter in the DUT’s entity. You must also assign a value to
the constant, as it will be used to instantiate the DUT with the configuration we want to test. We
chose to implement a 4-bit adder.

2. Create a signal for every port in the DUT’s entity.

Note that it is essential that you extract information from the DUT as-is, and that you do not modify
any bounds in the corresponding constant and signal declarations. This is necessary to guarantee that
the testbench is in sync with what the DUT expects as inputs (it doesn’t make any sense to testbench a
DUT when you are instantiating it with incorrect parameters).

Finally, we instantiate the DUT and wire it into the testbench with the signals created above.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_combinatorial is
end tb_adder_combinatorial;

architecture test of tb_adder_combinatorial is

-- adder_combinatorial GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_combinatorial PORTS
signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);
signal SUM : std_logic_vector(N_BITS downto 0);

begin

6 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

-- Instantiate DUT
dut : entity work.adder_combinatorial
generic map(N_BITS => N_BITS)
port map(OP1 => OP1,

OP2 => OP2,
SUM => SUM);

end architecture test;

Listing 4: Instantiate DUT

5.3 Feeding inputs to the DUT

Now that the DUT is instantiated and wired into the testbench, we can start feeding it inputs to make
the circuit actually do something.

5.3.1 Basic input feeding

Let’s go over what we are trying to achieve to see how to write the part of the testbench responsible for
feeding data to the DUT. We would like to feed test vectors in sequence to the unit, something like the
execution below:

1. Supply inputs OP1 and OP2 from vector 1.

2. Check output SUM from vector 1.

3. Supply inputs OP1 and OP2 from vector 2.

4. Check output SUM from vector 2.

5. . . .

In VHDL, recall that processes execute in parallel among each other, but the statements within each
process execute in sequence. This observation is key to writing the input-feeding part of the testbench: we
can provide all inputs in a single process, separated by time intervals, and each vector will be executed
one after the other until there no longer are any statements left in the process. It may be complicated to
see why this works in words, so let’s look at a concrete example to see how this all works.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_combinatorial is
end tb_adder_combinatorial;

architecture test of tb_adder_combinatorial is

-- "Time" that will elapse between test vectors we submit to the component.
constant TIME_DELTA : time := 100 ns;

-- adder_combinatorial GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_combinatorial PORTS

Version 1.2 of 10th March 2017, EPFL ©2017 7 of 29

VHDL Testbench Tutorial

signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);
signal SUM : std_logic_vector(N_BITS downto 0);

begin

-- Instantiate DUT
dut : entity work.adder_combinatorial
generic map(N_BITS => N_BITS)
port map(OP1 => OP1,

OP2 => OP2,
SUM => SUM);

-- Test adder_combinatorial
simulation : process
begin

-- Assign values to circuit inputs.
OP1 <= "0001"; -- 1
OP2 <= "0101"; -- 5

-- OP1 and OP2 are NOT yet assigned. We have to wait for some time
-- for the simulator to "propagate" their values. Any infinitesimal
-- period would work here since we are testing a combinatorial
-- circuit.
wait for TIME_DELTA;

-- Assign values to circuit inputs.
OP1 <= "0011"; -- 3
OP2 <= "0010"; -- 2

-- OP1 and OP2 are NOT yet assigned. We have to wait for some time
-- for the simulator to "propagate" their values. Any infinitesimal
-- period would work here since we are testing a combinatorial
-- circuit.
wait for TIME_DELTA;

end process simulation;

end architecture test;

Listing 5: Simulation process (basic)

Notice that the process does not have a sensitivity list. In VHDL, a process must either have a sensitivity
list, or a wait statement. A testbench is not an RTL design, so it is not “sensitive” to any input signals.
A testbench instead “controls” time to supply inputs at appropriate points, so the process contains 2
wait statements to propagate the 2 input vectors instead of a sensitivity list.

Let’s simulate our current testbench and see what we get.

1. Click on the icon to compile all sources. You should get something similar to Figure 6. Recall
that the testbench for the sequential adder is not written yet, so it is normal it fails to compile.

8 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

Figure 6: Compiling all testbenches

2. Go to Simulate > Start Simulation...

3. Select work > tb_adder_combinatorial, then press OK (Figure 7).

Figure 7: Start simulation

4. In the sim tab, click on tb_adder_combinatorial (Figure 8).

Figure 8: Simulation tab

5. Go to Add > To Wave > All items in region.

Version 1.2 of 10th March 2017, EPFL ©2017 9 of 29

VHDL Testbench Tutorial

6. Finally, in the simulation transcript, type restart -f; run 600 ns; (Figure 9). A waveform
window should appear with the result of the simulation (Figure 10).

Figure 9: Transcript

Figure 10: Waveform (repetitive input feeding)

The results look correct, i.e. 1+5 = 6 and 3+2 = 5, so at least the circuit is behaving correctly with
these 2 input vectors. However, notice that the simulation is “looping” and is applying the two
input vectors 3 times. Recall how processes work in VHDL. A process executes all its statements
sequentially, then restarts. In the testbench, the simulation process uses 2 wait statements for a
total of 200 ns of simulation time. Since we asked for a 600 ns simulation, the process had enough
time to restart 3 times.

5.3.2 Automatic simulation termination

In Figure 9, we saw that we had to manually provide the simulation interval, 600 ns, to ModelSim.
Manually selecting the time interval is error-prone, as one may accidentally supply an interval too short
for all test vectors to pass through the DUT, or too long and unnecessarily re-executing test vectors
which have already passed through the DUT.

It would be nice if the simulator could let the simulation run for as long as needed, i.e. until all test vec-
tors have passed through the DUT, then automatically halt the simulation. ModelSim has a command
specifically for this purpose: run -all. Instead of specifying a time interval, the -all flag instructs
ModelSim to continue simulating as long as events are scheduled for simulation. Therefore, one way to
halt the simulation is to cause processes not to restart once they have finished all their statements. This
can be achieved by placing an indefinite wait statement at the end of the simulation process, after all the
test vectors have passed through the DUT.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

10 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

entity tb_adder_combinatorial is
end tb_adder_combinatorial;

architecture test of tb_adder_combinatorial is

-- "Time" that will elapse between test vectors we submit to the component.
constant TIME_DELTA : time := 100 ns;

-- adder_combinatorial GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_combinatorial PORTS
signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);
signal SUM : std_logic_vector(N_BITS downto 0);

begin

-- Instantiate DUT
dut : entity work.adder_combinatorial
generic map(N_BITS => N_BITS)
port map(OP1 => OP1,

OP2 => OP2,
SUM => SUM);

-- Test adder_combinatorial
simulation : process
begin

-- Assign values to circuit inputs.
OP1 <= "0001"; -- 1
OP2 <= "0101"; -- 5

-- OP1 and OP2 are NOT yet assigned. We have to wait for some time
-- for the simulator to "propagate" their values. Any infinitesimal
-- period would work here since we are testing a combinatorial
-- circuit.
wait for TIME_DELTA;

-- Assign values to circuit inputs.
OP1 <= "0011"; -- 3
OP2 <= "0010"; -- 2

-- OP1 and OP2 are NOT yet assigned. We have to wait for some time
-- for the simulator to "propagate" their values. Any infinitesimal
-- period would work here since we are testing a combinatorial
-- circuit.
wait for TIME_DELTA;

-- Make this process wait indefinitely (it will never re-execute from
-- its beginning again).
wait;

end process simulation;

Version 1.2 of 10th March 2017, EPFL ©2017 11 of 29

VHDL Testbench Tutorial

end architecture test;

Listing 6: Indefinite wait statement added to simulation process

If we now recompile and relaunch the simulation, we should obtain the output shown in Figure 11b.

(a) Transcript (b) Waveform

Figure 11: Automatic simulation termination

5.3.3 Avoiding code duplication

Listing 6 is quite simple, but we can already see that there is a fair amount of code duplication going on.
Every additional test vector requires copy-pasting the code responsible for the operand assignments
and the wait statement. Although not exhaustive, we want to test the DUT with a potentially large
number of test vectors to have more confidence in its correctness. However, a large number of test
vectors would cause a huge increase in the simulation process’ code size, therefore making it hard to
read.

We handle this issue by refactoring the code used to feed a test vector into a procedure called check_add.
Notice the type of the input arguments provided to the check_add procedure. We provide the oper-
ands in natural format instead of in std_logic_vector. This makes it easy to create & add test
vectors, and also makes the code more readable.

As a side-effect, we increased the count of test vectors from 2 to 10 for illustration purposes.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_combinatorial is
end tb_adder_combinatorial;

architecture test of tb_adder_combinatorial is

-- "Time" that will elapse between test vectors we submit to the component.
constant TIME_DELTA : time := 100 ns;

-- adder_combinatorial GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_combinatorial PORTS
signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);

12 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

signal SUM : std_logic_vector(N_BITS downto 0);

begin

-- Instantiate DUT
dut : entity work.adder_combinatorial
generic map(N_BITS => N_BITS)
port map(OP1 => OP1,

OP2 => OP2,
SUM => SUM);

-- Test adder_combinatorial
simulation : process

procedure check_add(constant in1 : in natural;
constant in2 : in natural) is

begin
-- Assign values to circuit inputs.
OP1 <= std_logic_vector(to_unsigned(in1, OP1'length));
OP2 <= std_logic_vector(to_unsigned(in2, OP2'length));

-- OP1 and OP2 are NOT yet assigned. We have to wait for some time
-- for the simulator to "propagate" their values. Any infinitesimal
-- period would work here since we are testing a combinatorial
-- circuit.
wait for TIME_DELTA;

end procedure check_add;

begin

-- Check test vectors
check_add(12, 8);
check_add(10, 6);
check_add(4, 1);
check_add(11, 7);
check_add(10, 13);
check_add(8, 7);
check_add(1, 9);
check_add(7, 3);
check_add(1, 4);
check_add(8, 0);

-- Make this process wait indefinitely (it will never re-execute from
-- its beginning again).
wait;

end process simulation;

end architecture test;

Listing 7: Refactored test vector feeding code into a procedure called check add

Recompiling and relaunching the simulation (restart -f; run -all;) results in a waveform with
many more test vectors being shown (Figure 12).

Version 1.2 of 10th March 2017, EPFL ©2017 13 of 29

VHDL Testbench Tutorial

Figure 12: Waveform (many test vectors). Note that, by default, ModelSim displays signals in binary on
a waveform. You can modify the display radix of various signals by selecting the signals and going to
Wave > Format > Radix. The Unsigned radix is used in this waveform.

5.3.4 Self-checking testbench

Listing 7 is easy to read and to modify, but there is one last thing which is quite cumbersome: verifying
the DUT’s outputs. With the current system, a human must visually check the DUT’s outputs for
correctness on the simulation waveform. Although not a difficult task, it is quite annoying and
error-prone to have someone manually verify a waveform containing hundreds, perhaps thousands, of
test vectors.

It would be great if the user could modify the definition of a test vector to not only include DUT inputs,
but also its expected output. We could then modify the testbench such that it automatically compares
the output of the DUT with the expected output provided in the test vector. Nobody would then have
to manually check the results for correctness. This type of testbench is commonly called a self-checking
testbench. We apply the idea in Listing 8.

Notice how we use an assertion to compare the DUT output with the expected output provided in the
test vector. The VHDL assert statement is followed by:

1. A report statement and a string describing the error.

2. A severity statement and a severity level. VHDL supports 4 severity levels (note, warning,
error, failure) and simulators can be configured to react to each severity level in different
ways. We do not use this feature, but it is good to be aware of.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_combinatorial is
end tb_adder_combinatorial;

architecture test of tb_adder_combinatorial is

-- "Time" that will elapse between test vectors we submit to the component.
constant TIME_DELTA : time := 100 ns;

-- adder_combinatorial GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_combinatorial PORTS
signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);
signal SUM : std_logic_vector(N_BITS downto 0);

14 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

begin
-- Instantiate DUT
dut : entity work.adder_combinatorial
generic map(N_BITS => N_BITS)
port map(OP1 => OP1,

OP2 => OP2,
SUM => SUM);

-- Test adder_combinatorial
simulation : process

procedure check_add(constant in1 : in natural;
constant in2 : in natural;
constant res_expected : in natural) is

variable res : natural;
begin

-- Assign values to circuit inputs.
OP1 <= std_logic_vector(to_unsigned(in1, OP1'length));
OP2 <= std_logic_vector(to_unsigned(in2, OP2'length));

-- OP1 and OP2 are NOT yet assigned. We have to wait for some time
-- for the simulator to "propagate" their values. Any infinitesimal
-- period would work here since we are testing a combinatorial
-- circuit.
wait for TIME_DELTA;

-- Check output against expected result.
res := to_integer(unsigned(SUM));
assert res = res_expected
report "Unexpected result: " &

"OP1 = " & integer'image(in1) & "; " &
"OP2 = " & integer'image(in2) & "; " &
"SUM = " & integer'image(res) & "; " &
"SUM_expected = " & integer'image(res_expected)

severity error;
end procedure check_add;

begin

-- Check test vectors against expected outputs
check_add(12, 8, 20);
check_add(10, 6, 16);
check_add(4, 1, 5);
check_add(11, 7, 18);
check_add(10, 13, 23);
check_add(8, 7, 15);
check_add(1, 9, 10);
check_add(7, 3, 10);
check_add(1, 4, 5);
check_add(8, 0, 8);

-- Make this process wait indefinitely (it will never re-execute from

Version 1.2 of 10th March 2017, EPFL ©2017 15 of 29

VHDL Testbench Tutorial

-- its beginning again).
wait;

end process simulation;

end architecture test;

Listing 8: Self-checking testbench: updated check add procedure to automatically compare DUT out-
put against expected output provided in test vector

With this new updated code, any error detected in the simulation will result in an entry being written to
the simulation transcript. Let’s try to see what the transcript would look like when an error is detected:

The RTL code of the combinatorial adder we provide in the template is correct, so it is impossible to
obtain an “incorrect” result to trigger the assertion failure. However, for testing purposes, we can
artificially supply an incorrect res_expected argument to the check_add procedure to trigger the
assertion failure and see what the description on the transcript looks like.

For example, let’s change the line check_add(10, 13, 23)with check_add(10, 13, 22). If you
now recompile and run the testbench, you should get the following output on the simulation transcript:

Figure 13: Assertion failure in ModelSim transcript

You can then double-click on Time: 500ns in the simulation transcript to make ModelSim automatic-
ally display a cursor at the specified location in the waveform. You should get something like this:

Figure 14: Cursor displayed at error location 500 ns

Of course, the actual result obtained in the waveform is correct as we have artificially triggered the
assertion by providing an incorrect expected result here.

16 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

6 Testing the sequential adder

We will now write, from scratch, the testbench for the sequential adder. All code presented in this section
is to be written in testbench/tb_adder_sequential.vhd.

6.1 Instantiating the DUT

Let’s start by instantiating the DUT and wiring it into the testbench. We use the same algorithm de-
scribed in Section 5.2 to obtain Listing 9.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_sequential is
end tb_adder_sequential;

architecture test of tb_adder_sequential is

-- adder_sequential GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_sequential PORTS
signal CLK : std_logic;
signal RST : std_logic;
signal START : std_logic;
signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);
signal SUM : std_logic_vector(N_BITS downto 0);
signal DONE : std_logic;

begin

-- Instantiate DUT
dut : entity work.adder_sequential
generic map(N_BITS => N_BITS)
port map(CLK => CLK,

RST => RST,
START => START,
OP1 => OP1,
OP2 => OP2,
SUM => SUM,
DONE => DONE);

end architecture test;

Listing 9: Instantiate DUT

6.2 Generating a clock signal

The sequential adder is a synchronous component as it is sensitive to a clock. We saw in Section 5.3.1
that, for simulation purposes, one can assign values to signals by using a VHDL process. We do the
same in Listing 10 specifically for generating the CLK input of the DUT.

Version 1.2 of 10th March 2017, EPFL ©2017 17 of 29

VHDL Testbench Tutorial

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_sequential is
end tb_adder_sequential;

architecture test of tb_adder_sequential is

constant CLK_PERIOD : time := 100 ns;

-- adder_sequential GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_sequential PORTS
signal CLK : std_logic;
signal RST : std_logic;
signal START : std_logic;
signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);
signal SUM : std_logic_vector(N_BITS downto 0);
signal DONE : std_logic;

begin

-- Instantiate DUT
dut : entity work.adder_sequential
generic map(N_BITS => N_BITS)
port map(CLK => CLK,

RST => RST,
START => START,
OP1 => OP1,
OP2 => OP2,
SUM => SUM,
DONE => DONE);

-- Generate CLK signal
clk_generation : process
begin

CLK <= '1';
wait for CLK_PERIOD / 2;
CLK <= '0';
wait for CLK_PERIOD / 2;

end process clk_generation;

end architecture test;

Listing 10: Add process for generating CLK signal

Note the absence of any indefinite wait statement in the clk_generation process. It is important
that one not use such an indefinite wait statement, otherwise the process would only generate a single
clock pulse before halting instead of continuously generating clock pulses each time the process restarts.

A consequence of this design is that one cannot use the run -all command in ModelSim, but must

18 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

instead explicitly provide a simulation duration such as run 1000 ns.

6.3 Feeding inputs to the DUT

6.3.1 Default DUT inputs

In Section 5.3.1, we used a single process for feeding inputs to the combinatorial adder. Could we
envision doing the same thing for the sequential adder (i.e. use a single process for generating the clock
signal and the non-clock signals)?

A clock signal is periodic, whereas non-clock signals are generally non-periodic. Recall the execution
model of VHDL processes: processes execute in parallel among each other, but the statements within
each process execute in sequence. Given this execution model, there is no way to describe the periodic
behaviour of a clock parallely to the sequential behaviour of the other input signals in a single process.

However, it is possible to do so with multiple processes. One process can periodically generate a clock
signal, while another process can sequentially generate the non-clock signals which are to be fed to
the DUT. The 2 processes execute in parallel, so we can correctly model the periodic and non-periodic
behaviour of our 2 signal categories (clock and non-clock).

Therefore, we update our testbench with a second process called simulation which is responsible for
generating the non-clock inputs of the DUT. Our first attempt is shown in Listing 11 where the testbench
just assigns default values to the DUT’s non-clock signals.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_sequential is
end tb_adder_sequential;

architecture test of tb_adder_sequential is

constant CLK_PERIOD : time := 100 ns;

-- adder_sequential GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_sequential PORTS
signal CLK : std_logic;
signal RST : std_logic;
signal START : std_logic;
signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);
signal SUM : std_logic_vector(N_BITS downto 0);
signal DONE : std_logic;

begin

-- Instantiate DUT
dut : entity work.adder_sequential
generic map(N_BITS => N_BITS)
port map(CLK => CLK,

RST => RST,

Version 1.2 of 10th March 2017, EPFL ©2017 19 of 29

VHDL Testbench Tutorial

START => START,
OP1 => OP1,
OP2 => OP2,
SUM => SUM,
DONE => DONE);

-- Generate CLK signal
clk_generation : process
begin

CLK <= '1';
wait for CLK_PERIOD / 2;
CLK <= '0';
wait for CLK_PERIOD / 2;

end process clk_generation;

-- Test adder_sequential
simulation : process
begin

-- Default values
OP1 <= (others => '0');
OP2 <= (others => '0');
RST <= '0';
START <= '0';
wait for CLK_PERIOD;

end process simulation;

end architecture test;

Listing 11: Add simulation process for generating non-clock signals to the DUT. This first version
only assigns default values to the non-clock signals.

6.3.2 Resetting the DUT

The DUT is a synchronous circuit and has an asynchronous reset input, RST. When testing a component,
it is a good practice to supply it with a reset pulse before feeding it any other inputs. This guaran-
tees the DUT is in a valid state before we do anything. We update the simulation process with an
async_reset procedure for this.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_sequential is
end tb_adder_sequential;

architecture test of tb_adder_sequential is

constant CLK_PERIOD : time := 100 ns;

-- adder_sequential GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_sequential PORTS

20 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

signal CLK : std_logic;
signal RST : std_logic;
signal START : std_logic;
signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);
signal SUM : std_logic_vector(N_BITS downto 0);
signal DONE : std_logic;

begin

-- Instantiate DUT
dut : entity work.adder_sequential
generic map(N_BITS => N_BITS)
port map(CLK => CLK,

RST => RST,
START => START,
OP1 => OP1,
OP2 => OP2,
SUM => SUM,
DONE => DONE);

-- Generate CLK signal
clk_generation : process
begin

CLK <= '1';
wait for CLK_PERIOD / 2;
CLK <= '0';
wait for CLK_PERIOD / 2;

end process clk_generation;

-- Test adder_sequential
simulation : process

procedure async_reset is
begin

wait until rising_edge(CLK);
wait for CLK_PERIOD / 4;
RST <= '1';

wait for CLK_PERIOD / 2;
RST <= '0';

end procedure async_reset;

begin

-- Default values
OP1 <= (others => '0');
OP2 <= (others => '0');
RST <= '0';
START <= '0';
wait for CLK_PERIOD;

-- Reset the circuit.

Version 1.2 of 10th March 2017, EPFL ©2017 21 of 29

VHDL Testbench Tutorial

async_reset;
end process simulation;

end architecture test;

Listing 12: Add asynchronous reset

6.3.3 Self-checking test vectors

Now that the DUT is in a valid initial state, we can start feeding it test vectors and automatically check
if the output is correct. We create a check_add procedure for this purpose, similarly as for the combin-
atorial adder.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_sequential is
end tb_adder_sequential;

architecture test of tb_adder_sequential is

constant CLK_PERIOD : time := 100 ns;

-- adder_sequential GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_sequential PORTS
signal CLK : std_logic;
signal RST : std_logic;
signal START : std_logic;
signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);
signal SUM : std_logic_vector(N_BITS downto 0);
signal DONE : std_logic;

begin

-- Instantiate DUT
dut : entity work.adder_sequential
generic map(N_BITS => N_BITS)
port map(CLK => CLK,

RST => RST,
START => START,
OP1 => OP1,
OP2 => OP2,
SUM => SUM,
DONE => DONE);

-- Generate CLK signal
clk_generation : process
begin

CLK <= '1';
wait for CLK_PERIOD / 2;

22 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

CLK <= '0';
wait for CLK_PERIOD / 2;

end process clk_generation;

-- Test adder_sequential
simulation : process

procedure async_reset is
begin

wait until rising_edge(CLK);
wait for CLK_PERIOD / 4;
RST <= '1';

wait for CLK_PERIOD / 2;
RST <= '0';

end procedure async_reset;

procedure check_add(constant in1 : in natural;
constant in2 : in natural;
constant res_expected : in natural) is

variable res : natural;
begin

-- Our circuit is sensitive to the rising edge of the CLK, so we
-- need to be sure to assign signal values such that they are stable
-- at the next rising edge of the CLK.
wait until rising_edge(CLK);

-- Assign values to circuit inputs.
OP1 <= std_logic_vector(to_unsigned(in1, OP1'length));
OP2 <= std_logic_vector(to_unsigned(in2, OP2'length));
START <= '1';

-- OP1, OP2 and START are NOT yet assigned. We have to wait for some
-- time for the simulator to "propagate" their values. Any
-- infinitesimal period would work for the simulator to "propagate"
-- the values. However, our circuit is a sequential circuit
-- sensitive to the rising edge of CLK, so we need to hold our
-- signal assignments until the next rising edge of CLK so the
-- circuit can see them.
wait until rising_edge(CLK);

-- Remove values from circuit inputs. The circuit works with a PULSE
-- on its START input, which means that data on the inputs only
-- needs to be valid when START is high.
OP1 <= (others => '0');
OP2 <= (others => '0');
START <= '0';

-- The circuit informs us it has finished by asserting DONE, so we
-- can wait until we receive the signal before proceeding. DONE is
-- asserted at the rising edge of CLK, so we (the test system) can
-- sample the data and check its correctness.
wait until DONE = '1';

Version 1.2 of 10th March 2017, EPFL ©2017 23 of 29

VHDL Testbench Tutorial

-- Check output against expected result.
res := to_integer(unsigned(SUM));
assert res = res_expected
report "Unexpected result: " &

"OP1 = " & integer'image(in1) & "; " &
"OP2 = " & integer'image(in2) & "; " &
"SUM = " & integer'image(res) & "; " &
"SUM_expected = " & integer'image(res_expected)

severity error;

-- Wait for the circuit to go back into the IDLE state.
wait until DONE = '0';

end procedure check_add;

begin

-- Default values
OP1 <= (others => '0');
OP2 <= (others => '0');
RST <= '0';
START <= '0';
wait for CLK_PERIOD;

-- Reset the circuit.
async_reset;

-- Check test vectors against expected outputs
check_add(12, 8, 20);

end process simulation;

end architecture test;

Listing 13: Add test vectors

Let’s simulate our current testbench and see what we get.

1. Click on the icon to compile all sources. You should get something similar to Figure 15. All files
should successfully compile as they now all contain valid VHDL.

Figure 15: Compiling all testbenches

24 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

2. Go to Simulate > Start Simulation...

3. Select work > tb_adder_sequential, then press OK (Figure 16).

Figure 16: Start simulation

4. In the sim tab, click on tb_adder_sequential (Figure 17).

Figure 17: Simulation tab

5. Go to Add > To Wave > All items in region.

6. Finally, in the simulation transcript, type restart -f; run 2000 ns; (Figure 18). A wave-
form window should appear with the result of the simulation (Figure 19).

Figure 18: Transcript

Version 1.2 of 10th March 2017, EPFL ©2017 25 of 29

VHDL Testbench Tutorial

Figure 19: Waveform (repetitive input feeding)

The results look correct:

(a) The circuit seems to be reset as the SUM output changes as soon as RST is high (recall it is an
asynchronous reset, so various registers should be reset as soon as the reset signal is high, and
not at the next rising edge of the clock signal).

(b) The test vector 12 + 8 = 20 is correct.

However, we suffer from the “loopy” execution of the simulation process again, as was previ-
ously seen for the combinatorial adder. We will address this issue next so we can take advantage
of ModelSim’s practical automatic simulation termination command, run -all.

6.3.4 Automatic simulation termination

For the combinatorial adder, we saw how to stop a process from re-executing by means of an indefinite
wait statement. We would like to use the same technique to automatically halt the simulation with
ModelSim’s run -all command once all test vectors have gone through the DUT. Unfortunately,
unlike for the combinatorial adder, simply adding an indefinite wait statement to the simulation
process will not be sufficient for the simulation to automatically terminate.

Recall the semantics of the run -all command: ModelSim terminates the simulation when there no
longer exists any scheduled signal assignment in the testbench. If we add an indefinite wait statement
to the simulation process, then this process will indeed never re-execute, causing our test vectors to
only go through the DUT once (which is what we are looking for). However, the clk_generation
process still keeps restarting, so there always will be scheduled signal assignments in the testbench.
The end result is that the run -all command will never stop the simulation!

To address this issue, we would need the clk_generation process to also stop scheduling any new
signal assignments once all test vectors have gone through the DUT in the simulation process. We
can achieve this by introducing a boolean sim_finished signal. The sim_finished signal is written
by the simulation process once all test vectors have gone through the DUT, and is continuously read
by the clk_generation process to know when to stop scheduling any new signal assignments. If
the sim_finished signal is true, then we can use an indefinite wait statement in both processes
to avoid any new signal assignments from occuring, therefore allowing ModelSim to automatically
terminate the simulation.

Listing 14 shows how to use this technique.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_adder_sequential is
end tb_adder_sequential;

26 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

architecture test of tb_adder_sequential is

constant CLK_PERIOD : time := 100 ns;

-- Signal used to end simulator when we finished submitting our test cases
signal sim_finished : boolean := false;

-- adder_sequential GENERICS
constant N_BITS : positive range 2 to positive'right := 4;

-- adder_sequential PORTS
signal CLK : std_logic;
signal RST : std_logic;
signal START : std_logic;
signal OP1 : std_logic_vector(N_BITS - 1 downto 0);
signal OP2 : std_logic_vector(N_BITS - 1 downto 0);
signal SUM : std_logic_vector(N_BITS downto 0);
signal DONE : std_logic;

begin

-- Instantiate DUT
dut : entity work.adder_sequential
generic map(N_BITS => N_BITS)
port map(CLK => CLK,

RST => RST,
START => START,
OP1 => OP1,
OP2 => OP2,
SUM => SUM,
DONE => DONE);

-- Generate CLK signal
clk_generation : process
begin

if not sim_finished then
CLK <= '1';
wait for CLK_PERIOD / 2;
CLK <= '0';
wait for CLK_PERIOD / 2;

else
wait;

end if;
end process clk_generation;

-- Test adder_sequential
simulation : process

procedure async_reset is
begin

wait until rising_edge(CLK);
wait for CLK_PERIOD / 4;

Version 1.2 of 10th March 2017, EPFL ©2017 27 of 29

VHDL Testbench Tutorial

RST <= '1';

wait for CLK_PERIOD / 2;
RST <= '0';

end procedure async_reset;

procedure check_add(constant in1 : in natural;
constant in2 : in natural;
constant res_expected : in natural) is

variable res : natural;
begin

-- Our circuit is sensitive to the rising edge of the CLK, so we
-- need to be sure to assign signal values such that they are stable
-- at the next rising edge of the CLK.
wait until rising_edge(CLK);

-- Assign values to circuit inputs.
OP1 <= std_logic_vector(to_unsigned(in1, OP1'length));
OP2 <= std_logic_vector(to_unsigned(in2, OP2'length));
START <= '1';

-- OP1, OP2 and START are NOT yet assigned. We have to wait for some
-- time for the simulator to "propagate" their values. Any
-- infinitesimal period would work for the simulator to "propagate"
-- the values. However, our circuit is a sequential circuit
-- sensitive to the rising edge of CLK, so we need to hold our
-- signal assignments until the next rising edge of CLK so the
-- circuit can see them.
wait until rising_edge(CLK);

-- Remove values from circuit inputs. The circuit works with a PULSE
-- on its START input, which means that data on the inputs only
-- needs to be valid when START is high.
OP1 <= (others => '0');
OP2 <= (others => '0');
START <= '0';

-- The circuit informs us it has finished by asserting DONE, so we
-- can wait until we receive the signal before proceeding. DONE is
-- asserted at the rising edge of CLK, so we (the test system) can
-- sample the data and check its correctness.
wait until DONE = '1';

-- Check output against expected result.
res := to_integer(unsigned(SUM));
assert res = res_expected
report "Unexpected result: " &

"OP1 = " & integer'image(in1) & "; " &
"OP2 = " & integer'image(in2) & "; " &
"SUM = " & integer'image(res) & "; " &
"SUM_expected = " & integer'image(res_expected)

severity error;

28 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

VHDL Testbench Tutorial

-- Wait for the circuit to go back into the IDLE state.
wait until DONE = '0';

end procedure check_add;

begin

-- Default values
OP1 <= (others => '0');
OP2 <= (others => '0');
RST <= '0';
START <= '0';
wait for CLK_PERIOD;

-- Reset the circuit.
async_reset;

-- Check test vectors against expected outputs
check_add(12, 8, 20);
check_add(10, 6, 16);
check_add(4, 1, 5);
check_add(11, 7, 18);

-- Instruct "clk_generation" process to halt execution.
sim_finished <= true;

-- Make this process wait indefinitely (it will never re-execute from
-- its beginning again).
wait;

end process simulation;

end architecture test;

Listing 14: Automatic simulation termination

Finally, compiling () and simulating (restart -f; run -all;) the code shown in Listing 14
should yield the waveform shown in Figure 20. Note that only 4 test vectors are shown here to pre-
vent the figure from becoming too small and illegible.

Figure 20: Automatic termination

Version 1.2 of 10th March 2017, EPFL ©2017 29 of 29

	Introduction
	Testbench architecture
	Victims / test subjects
	Setup
	Project structure
	ModelSim setup

	Testing the combinatorial adder
	Minimum testbench
	Instantiating the DUT
	Feeding inputs to the DUT
	Basic input feeding
	Automatic simulation termination
	Avoiding code duplication
	Self-checking testbench

	Testing the sequential adder
	Instantiating the DUT
	Generating a clock signal
	Feeding inputs to the DUT
	Default DUT inputs
	Resetting the DUT
	Self-checking test vectors
	Automatic simulation termination

