
Artificial Neural Networks (Gerstner). Solutions for week 3

Variations of SARSA and continuous space

Exercise 1. Monte-Carlo Batch versus Bootstrap Batch

𝑠𝑠

𝑠𝑠𝑠

a2 a1

𝑠𝑠𝑠

a4 a3

𝑟𝑟𝑡𝑡=1

example trials:
1: s,a2 r=0.2,s’,a4 r=0
2: s’,a3 r=1
3: s’,a4 r=0
4: s’,a3 r=1
5: s,a1 r=0
6: s’,a4 r=0
7: s’,a4 r=0.5
8: s’,a3 r=1
9. s,a2 r=0.2,s’,a4 r=0.5
10. s,a1 r=0

𝑟𝑟𝑡𝑡=0.5 𝑟𝑟𝑡𝑡=0

𝑟𝑟𝑡𝑡=0𝑟𝑟𝑡𝑡=0.2

The aim is to estimate Q-values on the graph as shown in the figure on top. We run 10
exploration trials with the rewards as indicated in the figure. Some trials start in state s
others in state s′. Discount factor γ is equal to 1, and the policy is the random policy:
π(s, a) = 0.5 for all state-action pairs. You use three different methods for estimating the
Q-values: a. Batch Monte-Carlo, b. Batch-Expected SARSA, and c. Expected-SARSA.

a. Use Monte-Carlo in batch version to calculate the four Q-value (all combination of
state-action pairs). To do so, evaluate for all state-action pairs the cumulative expected
reward R(s, a) with discount factor γ = 1 by averaging over all trials that either start at
(s, a) or pass through (s, a).

b. Use Batch-Expected SARSA (= dynamic programming with an empirical component)
to evaluate the estimated Q-values Q(s, a) by exploiting the Bellman equation with
discount factor γ = 1.

Hints:

(i) Start at the terminal state and work up backwards.

(ii) The empirical Bellman equation is:

Q(s, a) = 〈rt〉+ γ
∑

s′ P
emp,a
s→s′

∑
a′ π(s′, a′)Q(s′, a′)

Here 〈rt〉 is the empirical average over the immediate rewards for the combination (s, a)
(over all trials), and P emp,a

s→s′ = n(s′|s, a)/
∑

s′′ n(s′′|s, a) is the empirical average of the
transition matrix where n(s′′|s, a) is the number of trials in which you have taken action
a in state s and landed in s′′.

(iii) Note that for action a2, the branching ratio P emp,a
s→s′ is unity, since there is only one

possible landing state.

c. Use Expected-SARSA in the standard online version to evaluate the estimated Q-values
Q(s, a). To do so, use the optimal time-dependent learning rate η that we have seen in
exercise 1 of last week. Since we have several states, you have to make η(s, a) to depend

on count n(s, a) for each state-action pair η(s, a) = 1/n(s, a). You initialize all Q-values
at zero and use discount factor γ = 1.

Hints:

(i) Convince yourself that after the first trial Q(s, a2) increases by 0.2.

(ii) Use the result of last week and exploit that the results of the specific
time-dependent η(s, a) = 1/n(s, a) in multi-arm bandit (and one-step horizon) tasks are
in fact equivalent to batch. Thus, we know that after 8 trials, the Q-values Q8(s′, a3)
and Q8(s′, a4) resulting from online Expected-SARSA gives are equivalent of a batch
evaluation of the rewards after 8 trials.

(iii) Then analyze the update of ∆Q(s, a2) after episode number 9. Remember that this
is the second time that you play this action.

d. Calculate the exact Q-values for the random policy and assuming a balanced branching
ratio where applicable.

e. Which of the algorithms performs best on this example?

Solution:

a. For each pair of state and action, we average discounted return over all trials:

• Q(s′, a4) = 1
5
(0 + 0 + 0 + 0.5 + 0.5) = 0.2 (corresponding to trials 1, 3, 6, 7, and 9)

• Q(s′, a3) = 1
3
(1 + 1 + 1) = 1 (corresponding to trials 2, 4, and 8)

• Q(s, a2) = 1
2

(
(0.2 + 0) + (0.2 + 0.5)

)
= 0.45 (corresponding to trials 1 and 9)

• Q(s, a1) = 1
2
(0 + 0) = 0 (corresponding to trials 5 and 10)

b. As a result of applying Batch-Expected SARSA, the estimated Q-values are

• Q(s′, a4) = 〈rt〉 = 1
5
(0 + 0 + 0 + 0.5 + 0.5) = 0.2

• Q(s′, a3) = 〈rt〉 = 1
3
(1 + 1 + 1) = 1

• Q(s, a2) = 〈rt〉+ Q(s′,a3)+Q(s′,a4)
2

= 1
2
(0.2 + 0.2) + 1+0.2

2
= 0.8

• Q(s′, a1) = 〈rt〉 = 1
2
(0 + 0) = 0

c. For Expected-SARSA we have:

• After trial 1: Q(s, a2)← Q(s, a2) + 1
1
RPE = 0 + 1(0.2 + 0− 0) = 0.2

• After trial 8: Q(s′, a3) = 1
3
(1 + 1 + 1) = 1 and Q(s′, a4) = 1

4
(0 + 0 + 0 + 0.5) = 0.125

• After trial 9: Q(s, a2) ← Q(s, a2) + 1
2
RPE = 0.2 + 1

2
(0.2 + 0.125+1

2
− 0.2) = 0.48125 and

Q(s′, a4) = 0.2

Therefore, at the end we have

• Q(s′, a4) = 0.2

• Q(s′, a3) = 1

• Q(s, a2) = 0.48125

• Q(s′, a1) = 0

d. The exact Q-values as the solutions to the Bellman equations corresponding to the figure
are

• Q(s′, a4) = 1
2
(0 + 0.5) = 0.25

• Q(s′, a3) = 1
1
(1) = 1

• Q(s, a2) = 1
1
(0.2) + 1+0.25

2
= 0.825

• Q(s′, a1) = 1
2
(0 + 0) = 0

e. Batch-Expected SARSA > Expected SARSA > Batch Monte-Carlo

Exercise 2. Q-values for continuous states

We approximate the state-action value function Q(s, a) by a weighted sum of basis functions
(BF):

Q(s, ã) =
∑
j

wãjΦ(s− sj) ,

where Φ(x) is the BF “shape”, and the sj’s represent the centers of the BFs.

Calculate
dQ(s, a)

dwai

,

the gradient of Q(s, a) along wai for a specific weight linking the basis function i to the action
a.

Solution:

Using the definition of Q(s, a) given, we find the gradient:

dQ(s, a)

dwaj

= Φ(s− sj) .

Therefore the direction of the gradient vector (dQ/dwaj) for j = 1, . . . , K is given by the
magnitude of responses (Φ(s− sj)) of all basis functions.

Exercise 3. Eligibility traces

In week 2 in exercise 3, we applied the SARSA algorithm to the case of a linear track with
actions ’up’ and ’down’. We found that it takes a long time to propagate the reward information
through state space. The eligibility trace is introduced as a solution to this problem.

Reconsider the linear maze from Fig 2. in exercise 3, but include an eligibility trace: for each
state s and action a, a memory e(s, a) is stored. At each time step, all the memories are reduced
by a factor λ: e(s, a) = λe(s, a), except for the memory corresponding to the current state s∗

and action a∗, which is incremented:

e(s∗, a∗) = λe(s∗, a∗) + 1 . (1)

Now, unlike the case without eligibility trace, all Q-values are updated at each time step
according to the rule

∀(s, a) ∆Q(s, a) = η [r − (Q(s∗, a∗)−Q(s′, a′))] e(s, a) . (2)

where s∗, a∗ are the current state and action, and s′, a′ are the immediately following state and
action.

We want to check whether the information about the reward propagates more rapidly. To find
out, assume that the agent goes straight down in the first trial. In the second trial it uses a
greedy policy. Calculate the Q-values after two complete trials and report the result.

Hint: Reset the eligibility trace to zero at the beginning of each trial.

Solution:

The table below shows the evolution of theQ values for each relevant state action pair during the
first 2 trials, starting at the first step when there is a non-zero update ∆ = η [r − (Q(s∗, a∗)−Q(s′, a′))].
We assume that the agent goes straight down in the first trial, that it always picks the best
action, and that the eligibility traces are reset when the agent picks the reward, and the agent
is put back to the starting position.

trial transition (s, a1) (s′, a1) (s′′, a1) ∆

1 s′′ → s′′′ Q 0 0 0 η
e λ2 λ 1 −

2 s→ s′ Q ηλ2 ηλ η η2(λ− λ2)
e 1 0 0 −

2 s′ → s′′ Q ηλ2 + η2(λ− λ2) ηλ η η2(1− λ)
e λ 1 0 −

2 s′′ → s′′′ Q ηλ2 + 2η2λ− 2η2λ2 ηλ+ η2(1− λ) η η − η2

e λ2 λ 1 −
3 s→ s′ Q 2ηλ2 + 2η2λ− 3η2λ2 2ηλ+ η2 − 2η2λ 2η − η2 · · ·

e 1 0 0 −

· · ·

Although the Q-values for s′′ are the same as without the eligibility trace (see exercise from
last week), the Q-values for s and s′ already start to approach their asymptotical value (i. e. 1)
in the first trial.

Exercise 4. Eligibility traces in continuous space

1

0

x Q(s,a)

n = 4 n = 8

x = 0.3

up down

Q(0.3,down)

The left part of the figure above shows a different representation of last week’s “linear track”
exercise: the vertical divisions represent different states, and the two column correspond to
the two possible actions available to the agent: go up or down. Each square represents a
possible state-action combination, and thus a Q-value. (Note that the uppermost “up” action
and the lowermost “down” action should be “greyed out”: they are impossible. But this is
not relevant to the rest of this exercise.)

Suppose now that the agent moves in a continuous 1-dimensional space 0 ≤ x ≤ 1, with the
target located at x = 0. Separate this state space into n equal bins of width ∆x = 1/n. In
each time step, the agent moves by one bin. Vary the discretization by varying n:
n = 4, 8, 16 . . .

a. Suppose that one action (such as move down) corresponds to one time step ∆t in ’real
time’. How should we rescale the parameter ∆t, so that the speed v = ∆x/∆t remains
constant when we change the discretization?

b. We use an eligibility trace with decay parameter λ. How should we rescale λ, in order
that the ”speed of information propagation” in SARSA(λ) remains constant?

Hint: Consider for example, the Q-value at x = 0.5 after 2 complete learning trials.

Solution:

a. If ∆x/∆t has to remain constant, then ∆t should vary like ∆x, i.e., ∆t ∝ 1/n.

b. A point “sitting” at x is x/∆x = x · n steps away from the reward (assuming we always
choose the “down” action). As we have seen in exercise 2, on the first trial, the Q-value of
a state d steps from the trial is updated proportional to λd. Thus, if we want the update
to stay constant under rescaling, we need

∆Q(s, a) ∝ λd = λx·n = cst

This holds if we replace λ by a “rescaled” λ̃ = λ
1
n .

Exercise 5. Gradient-based learning of Q-values

Assume again that the Q-values are expressed as a weighted sum of 400 basis functions:
Q(s, a) =

∑400
k=1w

k
aΦ(s − sk). For the moment the function Φ is arbitrary, but you may think

of it as a Gaussian function. Note that s and sk are usually vectors in RN in this case. There
are 3 different actions so that the total number of weights is 1200. Now consider the error
function Et = 1

2
δ2
t , where

δt = rt + γ ·Q(s′, a′)−Q(s, a) (3)

is the reward prediction error. Our aim is to optimize Q(s, a) by changing the parameters w.

a. Find a learning rule that minimizes the error function Et by gradient decent. Consider
the case where the actions a and a′ are different.

Write down the learning rule. How many weights need to be updated in each time step?

b. Find a learning rule that minimizes the error function Et by gradient decent. Consider
the case where the actions a and a′ are the same.

Write down the learning rule.

Is there any difference to the case considered in a?

c. Suppose that the input space is two-dimensional and you discretize the input in 400 small
square ’boxes’ (i.e., 20× 20). The basis function Φ(s− sk) is now the indicator function:
it has a value equal to one if the current state s is in ‘box’ k and zero otherwise.

How do your results from (a) and (b) look like in this case?

d. The learning rule in c is very similar to standard SARSA. What is the difference?

e. Assume that Q(s′, a′) in Equation 3 does not depend on the weights. How does the
learning rule look like for a, b and c. How is your result related to standard discrete
SARSA?

Solution:

a. Let’s start by computing the derivative of Q(s, a) with respect to wã
k̃

(we’ll use this later):

dQ(s, a)

dwã
k̃

= δaã Φ(s− sk̃) ,

where δaã is the Kroneker, i.e., it is 1 if a = ã, and 0 otherwise (not to be confused with
δt).

We then compute the gradient, i.e., the derivative of Et with respect to wã
k̃
, using the

chain rule a few times and the result above:

dEt

dwã
k̃

= δt

[
γ

dQ(s′, a′)

dwã
k̃

− dQ(s, a)

dwã
k̃

]
= δt [γδa′ã Φ(s′ − sk̃)− δaã Φ(s− sk̃)] .

To turn this into a learning rule, we have to move the weights in the direction that
minimizes the error, i.e.

∆wã
k̃

= −η dEt

dwã
k̃

= η δt [δaã Φ(s− sk̃)− γδa′ã Φ(s′ − sk̃)] . (4)

2 · 400 weights (for actions a and a′) need to be updated in each step.

b. In the case where a = a′ (i.e., the action taken is the same in the two consecutive steps):

∆wã
k̃

= η δt (Φ(s− sk̃)− γΦ(s′ − sk̃)) δaã. (5)

400 weights need to be updated.

c. The learning rules look the same. Only two weights need to be updated if a 6= a′ since
the basis function is zero Φ(s − sk) = 0 if s does not fall into the kth box. If a = a′,
we have to update either one or two weights, depending on whether s and s′ fall into the
same box or not.

d. Without the term γΦ(s′ − sk̄), the algorithm becomes identical to standard SARSA.

e. If Q(s′, a′) is a fixed target that does not depend on the weights, the term γΦ(s′ − sk̄)
drops out of the learning rules and with the small square box function approximator the
algorithm becomes equivalent to SARSA. This is sometimes called semigradient learning.

Exercise 6. Consistency condition for 3-step SARSA

In class we have seen the arguments leading to the error function arising from the consistency
condition of Q-values.

E = 0.5
∑

[δt]
2

with δt = rt + γQ(s′, a′) − Q(s, a) This specific consistency condition corresponds to 1-step
SARSA.

Write down an analogous consistency condition for 3-step SARSA.

Solution:

The error function is E = 0.5
∑

[δt]
2, but with a consistency condition δt = rt +γrt+1 +γ2rt+2 +

γ3Q(st+3, at+3) − Q(s, a) where st+3, at+3 are state and action three time steps after taking
action a in state s. Explanation: the value Q(s, a) must be explained by the (average of the)
rewards in the next three steps plus the Q-value of the action three time steps after taking
action a in state s. The averaging is taken implicitly by an online on-policy algorithm once the
same sequence has been taken multiple times.

