Biogas from Swiss farms

Switzerland has $57^{\prime} 617$ farm sites, of a mean size of 20 ha per farm, spread between 1 and 50 ha for $>92 \%$ of them.
40'309 farms breed cows ($1^{\prime} 545^{\prime} 600$ cows, 38 cows per farm on average), $8^{\prime} 234$ breed pigs ($1^{\prime} 584^{\prime} 400$ pigs, 192 pigs per farms on average)
and the country has $10^{\prime} 519 \mathrm{~km}^{2}$ of agricultural surface (25.5% of the total) from which also straw and other residues are recoverable.

Recoverable power:
205 W per cow from cow manure
40 W per pig from pig manure
120.5 W from 1 ha of agro-waste
a)What is the recoverable yearly Swiss agro-biogas potential (in PJ)?
b)How does this relate to the total final Swiss energy consumption (of $\approx 800 \mathrm{PJ}$)?
c)What is the average potential power-size per farm: in kW ? In biogas flow $\left(\mathrm{m}^{3} / \mathrm{h}\right)$?
(Assume $66 \% \mathrm{CH}_{4}$ in the biogas and 11 kWh per $\mathrm{m}^{3} \mathrm{CH}_{4}$)
The reality of Swiss agricultural biogas exploitation in 2018 is a production of 140 GWh in 110 installations in ICE CHP with 35.7% electric efficiency.
d)How does this compare to the theoretical energy potential?
e)What is the average engine power size per site? (Assume 7000h load per year)
f) What do you conclude from this ? How could the biogas potential be better used ?

Gasoline / Diesel replacement by inland bioethanol / biodiesel production

Inland mobility fuel in Switzerland is ca. 5.1 Mtoe gasoline and ca. 2 Mtoe diesel per year.
$(1$ Mtoe $=42 \mathrm{PJ})$
Assume we want to replace part of it by inland biofuel production and that we can dedicate $1000 \mathrm{~km}^{2}$ of the Swiss territory (total: 41 ' $000 \mathrm{~km}^{2}$) to beet plantation and $1000 \mathrm{~km}^{2}$ to rapeseed plantation.

Bioethanol (21.3 MJ / L) from beet : $2500 \mathrm{~L} /$ ha
Biodiesel ($33 \mathrm{MJ} / \mathrm{L}$) from rapeseed : $700 \mathrm{~L} /$ ha
a)How much (\%) of imported gasoline and diesel fuel consumption could we replace this way?
b)If we were to dedicate instead $2000 \mathrm{~km}^{2}$ of forest land (there is ca $11^{\prime} 000 \mathrm{~km}^{2}$ of forest) to bioethanol production (renewable dry wood production of 20 tonne / ha.yr, converting 3 kg wood to 1 kg ethanol), how much gasoline could we replace ? (ethanol density: $0.8 \mathrm{~kg} / \mathrm{L}$)
c)If we would instead convert this yearly available wood quantity into methane (wood-to-methane $=$ 70% energy efficiency yield) for mobility (gas vehicles)? (Assume $16.7 \mathrm{MJ} / \mathrm{kg}$ dry wood)

Comment the results.

