EPFL - Printemps 2021
Géométrie Riemannienne I
Série 5

M. Troyanov, G. Buro Exercices 23 Mars 2021

- **5.1.** Soit $f: M \to \mathbb{R}$ une fonction lisse. On définit le gradient de f par le champ de vecteurs grad $f \in \Gamma(M)$ tel que $\langle \operatorname{grad} f, X \rangle = df(X) = X(f)$ pour tout $X \in \Gamma(M)$. Calculer l'expression du gradient en coordonnées.
 - (a) Soit $Y \in \Gamma(M)$ un champ de vecteurs, alors la divergence de Y est donnée par la fonction lisse $\operatorname{div}(Y) \in \mathcal{C}^{\infty}(M)$ définie par $\operatorname{div}(Y) = \operatorname{Trace}(\nabla Y)$ où $\nabla Y : \Gamma(M) \to \Gamma(M)$ est donnée par $\nabla Y(X) = \nabla_X Y$.
 - (b) Calculer l'expression de la divergence en coordonnées.
 - (c) Soit $f: M \to \mathbb{R}$ une fonction lisse. On définit le laplacien de f par la fonction $\Delta f = \operatorname{div}(\operatorname{grad}(f))$. Calculer l'expression du laplacien en coordonnées.
 - (d) Remarquer que si $M = \mathbb{R}^n$, les concepts de gradient, divergence et laplacien correspondent à ce que vous avez appris en deuxième année.
- **5.2**. Expliciter l'application de transport parallèle le long d'un horocycle du 1/2-plan hyperbolique (une courbe de la forme $\gamma(t) = (t, c)$ où c est une constante).
- **5.3**. (a) Expliquer ce qu'on entend lorsqu'on dit qu'une connexion n'est pas un tenseur, puis justifier cette affirmation.
 - (b) Prouver la formule de changement de coordonnées pour les symboles de Levi-Civita: Supposons que (x^1, \ldots, x^m) est un système de coordonnées au voisinage de $p \in M$ et (y^1, \ldots, y^m) est un système de coordonnées au voisinage de $q = f(p) \in M$ avec f un changement de coordonnées.

Montrer que le changement de coordonnées pour les symboles de Christoffels est donné par la formule

$$\sum_{k=1}^{m} \overline{\Gamma}_{ij}^{k}(x) \frac{\partial y^{\gamma}}{\partial x^{k}} = \sum_{\alpha,\beta=1}^{n} \Gamma_{\alpha\beta}^{\gamma}(f(x)) \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\alpha}}{\partial x^{i}} + \frac{\partial^{2} y^{\gamma}}{\partial x^{i} \partial x^{j}}.$$

- **5.4.** Soit (M,g) une variété riemannienne et $\gamma:[0,1]\to M$ une courbe lisse quelconque.
 - (a) Montrer que si ∇ est la connexion de Levi-Civita associée à g alors, pour tout couple de champs parallèles $X, Y \in \Gamma_{\gamma}$, g(X, Y) est constant le long de γ .
 - (b) En déduire que P_t est une isométrie de $T_{\gamma(0)}M$ sur $T_{\gamma(t)}M$ puis qu'il existe des champs de vecteurs qui forment une base orthonormée en tout point et qui sont parallèle le long de γ .
 - (c) Soit X un champs parallèle le long de γ . Montrer que ses coordonnées dans un repère du type précédent sont constantes.
 - (d) On suppose maintenant que M est de dimension 2. Montrer que γ est une géodésique si et seulement si $\|\dot{\gamma}\|$ est constante et si $\|X\|$ et $\angle(X,\dot{\gamma})$ sont constants le long de γ pour tout champ parallèle X.
- 5.5. Soit ∇ une connexion (quelconque) et P_t l'application de transport parallèle associée. Montrer que

$$\nabla_t V_0 = \lim_{t \to 0} \frac{P_t^{-1} V(t) - V(0)}{t - t_0}.$$

Interpréter cette formule.

- **5.6**. Montrer que le transport parallèle dans \mathbb{R}^n muni de la métrique euclidienne ne dépend pas de la courbe choisie.
- **5.7**. Soit (M,g) une variété riemannienne connexe et soit H_p l'ensemble des endomorphisme de T_pM donnés par des transports parallèles le long de courbes $c:[0,1]\to M$ de classe \mathcal{C}^1 par morceaux telles que c(0)=c(1). Montrer que H_p est un sous groupe de $O_n(\mathbb{R})$ et que H_p et H_q sont isomorphes.
- **5.8**. On considère un cercle parallèle à l'équateur de la sphère \mathbb{S}^2 . Calculer l'holonomie le long de cette courbe. Il peut être utile introduire le cône de \mathbb{R}^3 dont l'intersection avec \mathbb{S}^2 est exactement la courbe considérée.